1)0,16x-7=2,5x+5 2)2*7x+7x+2=357
3)32x-12*3x+27=0
4)2cos2x-5*2-sin^x=-2
5)5*36x-30x-6*25x=0
6)4x=18-x
1)0,16x-7=2,5x+5
2)2*7x+7x+2=357
3)32x-12*3x+27=0
4)2cos2x-5*2-sin^x=-2
5)5*36x-30x-6*25x=0
6)4x=18-x
Если уравнение имеет несколько корней, запиши их через знак «;» в порядке возрастания.
ответ: 3
Объяснение: Для простоты работайте по действиям.
1. Упростите выражение в скобках:
Сначала в знаменателях дробей внутри скобок вынесите общий множитель "а", получите знаменатели в 1-ой дроби а(а+3в), а во второй дроби а(а-3в); приведите эти две дроби к общему знаменателю, домножив 1-ю дробь на (а-3в),а 2-ю на (а+3в).
Получите одну дробь со знаменателем а(а²-9в²), а в числителе -
(а-3в)² - (а+3в)²,раскройте в числителе скобки и приведите подобные слагаемые, получим числитель дроби -12ав,а в знаменателе замените а(а²-9в²) на -а(9в²-а²) для того, чтобы позже легче сократить овую дробь.
2) Полученный ответ надо разделить на следующую дробь или умножить на обратную. После сокращения получите -12ав/-4ав = 3.
Объяснение:
мы сначала приравняем каждую скобку к 0 и нанесем на числовую прямую полученные корни уравнений
x-2 = 0 x = 2
x-3= 0 x=3
_ _ + _ + +
23
теперь посмотрим, какие знаки имеют наши скобки на каждом интервале
(-∞; 2) x-2 < 0 x-3 < 0 отмечаем это на числовой прямой
[2; 3) x-2 ≥ 0 x-3 <0
[3; +∞) x-2 >0 x-3 ≥ 0
теперь раскрываем скобки согласно нашим знакам
(-∞; 2) - обе скобки отрицательны, значит
-(x-2)- (x-3) =1 -x+2 -x +3 =1 -2x = -4 x=2 , однако х=2 ∉ (-∞;2), значит на этом интервале решений нет х ∈∅
[2; 3) знаки + и -, значит будет
(х-2)-(х-3)=1 х -2 -х +3=1 1=1т.е. равенство выполняется для ∀х на этом интервале, тогда ответом на этом интервале будет
2≤ х < 3
[3;+∞) - обе скобки положительны, тогда запишем
(х-2)+(х-3) = 1 2х = 6 х = 3 эта точка ∈ [3;+∞), значит это тоже наше решение
теперь объединим наши решения и получим ответ
х ∈ [2;3]