1) [1; 10] - случайное число. Найти вероятность того, что это число является решением неравенства x2 - 5x +6 <0. 2) [1; 10] - случайное число. Это число х? - Найти вероятность того, что существует решение неравенства 5x - 6 <0.
Вероятность выполнения нормы первым, вторым и третьим спортсменом равны соответственно p1=0.8, p2=0.7, p3=0.9, невыполнения - q1=1-p1=0.2, q2=1-p2=0.3, q3=1-p3=0.1. а) По крайней мере один спортсмен выполнит норму: то есть обеспечим отсутствие случая, когда все спортсмены не выполнят норму. То есть 1 - q1*q2*q3 = 1 - 0.2*0.3*0.1 = 0.994. б) Тут я хз, надо "по крайней мере" или "ровно" два спортсмена. Решу для обоих случаев. По крайней мере два спортсмена выполнят норму: Из ранее полученного значения вычтем еще и случаи, где ровно один спортсмен выполняет норму, а другие два не выполняют. 1 - q1*q2*q3 - p1*q2*q3 - q1*p2*q3 - q1*q2*p3 = 1 - 0.2*0.3*0.1 - 0.8*0.3*0.1 - 0.2*0.7*0.1 - 0.2*0.3*0.9 = 0.902. Ровно два спортсмена выполнят норму: p1*p2*q3 + p1*q2*p3 + q1*p2*p3 = 0.8*0.7*0.1 + 0.8*0.3*0.9 + 0.2*0.7*0.9 = 0.398.
По теореме синусов:
a : sin 45° = c : sin 30°
a = c · √2/2 : (1/2) = c√2
b : sin 105° = c : sin 30°
Найдем sin 105° :
sin 105° = sin (90° + 15°) = cos 15°
cos 15 = cos( \frac{30}{2} ) = \sqrt{ \frac{cos 30 + 1}{2} } = \sqrt{ \frac{ \sqrt{3}+2 }{4} } = \frac{1}{2} \sqrt{ \frac{4+2 \sqrt{3} }{ 2 } }
cos15= \frac{1}{2} \sqrt{ \frac{ ( \sqrt{3}+1 )^{2} }{2} } = \frac{ \sqrt{3}+1 }{2 \sqrt{2} }
b = c · sin105° : sin 30° = 2c · 1/2 · (√3 + 1)/√2 = c · (√3 + 1)/√2
m² = (b² + c²)/2 - a²/4
m² = (c · (√3 + 1)/√2)²/2 + c²/2 - 2c²/4 = c²(√3 + 1)²/4
m = c · (√3 + 1)/2 = b/√2
По теореме синусов из ΔАМС:
m : sin 30° = b : sinα
sinα = 1/2 · b / m = b/(2m) = b / (2 · b/√2) = √2/2
Так как α тупой угол, α = 135°
а) По крайней мере один спортсмен выполнит норму:
то есть обеспечим отсутствие случая, когда все спортсмены не выполнят норму. То есть 1 - q1*q2*q3 = 1 - 0.2*0.3*0.1 = 0.994.
б) Тут я хз, надо "по крайней мере" или "ровно" два спортсмена. Решу для обоих случаев.
По крайней мере два спортсмена выполнят норму:
Из ранее полученного значения вычтем еще и случаи, где ровно один спортсмен выполняет норму, а другие два не выполняют.
1 - q1*q2*q3 - p1*q2*q3 - q1*p2*q3 - q1*q2*p3 = 1 - 0.2*0.3*0.1 - 0.8*0.3*0.1 - 0.2*0.7*0.1 - 0.2*0.3*0.9 = 0.902.
Ровно два спортсмена выполнят норму:
p1*p2*q3 + p1*q2*p3 + q1*p2*p3 = 0.8*0.7*0.1 + 0.8*0.3*0.9 + 0.2*0.7*0.9 = 0.398.