Вершины треугольника расположены в трех точках, не лежащих на одной прямой. Значит, если на одной из параллельных прямых расположены две вершины, то другая будет расположена на параллельной ей прямой. Пусть две точки, являющиеся вершинами расположены на прямой с 13-ю точками. Рассмотрим общее количество таких пар точек. Оно будем даваться сочетанием из 13 точек по 2, т. е. C(2,13) = 13!/2!(13-2)! = 13!/2!11! = 12*13/2 = 6*13 = 78. Т. к. на параллельной прямой расположена одна точка, а их всего 6, то общее количество таких преугольников будет 6*C(2,13) = 6*78 = 468. Аналогично, если две вершины расположены на прямой с 6-ю точками, а одна на прямой с 13-ю, то общее количество таких треугольников будет равно 13*C(2,6) = 13*6!/2!(6-2)! = 13*6!/2!4! = 13*5*6/2 = 13*15 = 195. Тогда общее число возможных треугольников будет 6*C(2,13) + 13*C(2,6) = 468 + 195 = 663.
Решение: Воспользуемся формулой арифметической прогрессии: an=a1+d*(n-1) Из этой формулы найдём разность арифметической прогрессии (d)^ a10=a1+d*(10-1) -49=-1+d*9 9d=-49+1 9d=-48 d=48/9=5ц 1/3 Для доказательства подставим известные нам данные в формулу an-члена, известного, что он равен (-86) и найдём число (n) этой прогрессии: -86=-1+(-5ц1/3)*(n-1) -86=-1-16n/3+16/3 Приведём к общему знаменателю (3): -258=-3-16n+16 16n=258-3+16 16n=271 n=271/16≈16,9-число не натуральное, следовательно число (-86) не может быть членом данной арифметической прогрессии.
ответ: 663.
Воспользуемся формулой арифметической прогрессии:
an=a1+d*(n-1)
Из этой формулы найдём разность арифметической прогрессии (d)^
a10=a1+d*(10-1)
-49=-1+d*9
9d=-49+1
9d=-48
d=48/9=5ц 1/3
Для доказательства подставим известные нам данные в формулу an-члена, известного, что он равен (-86) и найдём число (n) этой прогрессии:
-86=-1+(-5ц1/3)*(n-1)
-86=-1-16n/3+16/3
Приведём к общему знаменателю (3):
-258=-3-16n+16
16n=258-3+16
16n=271
n=271/16≈16,9-число не натуральное, следовательно число (-86) не может быть членом данной арифметической прогрессии.