Из чисел 21, 22, 23, 24 простым (не раскладывающимся на произведение) является число 23. Следующее за ним число 24 раскладывается, например, на 4*6, то есть 4 и 6 уже встречались в произведении, составляющем факториал.
Получается, что для того, чтобы факториал делился на 21 нужно, чтобы он делился на 3 и 7, для деления на 22 нужно, чтобы он делился на 2 и 11, для деления на 24 нужно, чтобы делился на 4 и 6. И лишь для деления на 23 он должен делиться именно на 23, значит, n! должен состоять из произведения всех чисел от 1 до 23.
1. Графиком функции y=(x+4)² будет являться график функции y=x², смещенный по оси абсцисс на 4 единицы влево: x=-4 ⇒ y=0 x=-5 ⇒ y=1 x=-3 ⇒ y=1 x=-6 ⇒ y=4 x=-2 ⇒ y=4
2. Графиком функции y=(x-5)² будет являться график функции y=x², смещенный по оси абсцисс на 5 единиц вправо: x=5 ⇒ y=0 x=6 ⇒ y=1 x=4 ⇒ y=1 x=7 ⇒ y=4 x=3 ⇒ y=4
3. Графиком функции y=(x-1,5)² будет являться график функции y=x², смещенный по оси абсцисс на 1,5 единицы вправо: x=1,5 ⇒ y=0 x=2,5 ⇒ y=1 x=0,5 ⇒ y=1 x=3,5 ⇒ y=4 x=-0,5 ⇒ y=4
4. Графиком функции y=(x+3,5)² будет являться график функции y=x², смещенный по оси абсцисс на 3,5 единицы влево: x=-3,5 ⇒ y=0 x=-4,5 ⇒ y=1 x=-2,5 ⇒ y=1 x=-5,5 ⇒ y=4 x=-1,5 ⇒ y=4
n! = 1*2*3*4*...*n
Из чисел 21, 22, 23, 24 простым (не раскладывающимся на произведение) является число 23. Следующее за ним число 24 раскладывается, например, на 4*6, то есть 4 и 6 уже встречались в произведении, составляющем факториал.
Получается, что для того, чтобы факториал делился на 21 нужно, чтобы он делился на 3 и 7, для деления на 22 нужно, чтобы он делился на 2 и 11, для деления на 24 нужно, чтобы делился на 4 и 6. И лишь для деления на 23 он должен делиться именно на 23, значит, n! должен состоять из произведения всех чисел от 1 до 23.
ответ: 23
x=-4 ⇒ y=0
x=-5 ⇒ y=1
x=-3 ⇒ y=1
x=-6 ⇒ y=4
x=-2 ⇒ y=4
2. Графиком функции y=(x-5)² будет являться график функции y=x², смещенный по оси абсцисс на 5 единиц вправо:
x=5 ⇒ y=0
x=6 ⇒ y=1
x=4 ⇒ y=1
x=7 ⇒ y=4
x=3 ⇒ y=4
3. Графиком функции y=(x-1,5)² будет являться график функции y=x², смещенный по оси абсцисс на 1,5 единицы вправо:
x=1,5 ⇒ y=0
x=2,5 ⇒ y=1
x=0,5 ⇒ y=1
x=3,5 ⇒ y=4
x=-0,5 ⇒ y=4
4. Графиком функции y=(x+3,5)² будет являться график функции y=x², смещенный по оси абсцисс на 3,5 единицы влево:
x=-3,5 ⇒ y=0
x=-4,5 ⇒ y=1
x=-2,5 ⇒ y=1
x=-5,5 ⇒ y=4
x=-1,5 ⇒ y=4