1.2. Выберите функции, графики которых параллельны: А)y=0,5х+4 и y=-2,5х-2 В)y=2x+3 и y=2x-4 D)y= 2х+1 и y=1,5х E)y=2,5х+6 и y=2x-1 C)y=-x+4 и у= -3x-1
Ть опервый использование свойств арифметической прогрессии) Имеем конечную арифметическую прогрессию с первым членом -111, разностью арифметической прогрессии 1 (разница между двумя последовательными целыми числами) и суммой 339, нужно найти последний член данной прогрессии
- не подходит, количество членов прогрессии не может быть отрицательным
ответ: 114
второй на смекалку) (так как слагаемые последовательные целые числа, и меньшее из них отрицательное, а сумма положительна, то последнее из них тоже положительное, иначе они б в сумме дали отрицательное число как сумму отрицательных числе, а не положительное)
далее -111+(-110)+.+0+1+2+...+110+111+112+...+х= (-111+111)+(-110+110)+(-99+99)+(-1+1)+0+112+113+114+.. + х= 0+0+0+....+0+0+112+113+114+..+х =112+113+..+х т.е каждому отрицательному найдется в "противовес" положительное, которое в сумме вместе с ним даст 0, и фактически наша сумма равна 112+113+...+х (*) так как наименьшее из слагаемых (*) трицифровое ,и наша сумма трицифровое число, то мы последовательно сравнивая суммы , найдем его очень быстро 112=112 112+113=225 - меньше 112+113+114=339 -- совпало значит искомое число х равно 114 ответ: 114
В решении.
Объяснение:
Решить уравнения:
1) 10/(x+2) + 9/x = 1:
Умножить уравнение на х(х+2), чтобы избавиться от дробного выражения, надписать над числителями дополнительные множители:
=х*10 + (х+2)*9 = х(х+2)*1
Раскрыть скобки:
10х + 9х +18 = х² + 2х
Привести подобные члены:
-х²-2х+19х+18=0
-х²+17х+18=0/-1
х²-17х-18=0, квадратное уравнение, ищем корни:
D=b²-4ac =289+72=361 √D= 19
х₁=(-b-√D)/2a
х₁=(17 - 19)/2
х₁= -2/2
х₁= -1;
х₂=(-b+√D)/2a
х₂=(17 + 19)/2
х₂=36/2
х₂=18;
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
2) x/(x+7) - (x-7)/(x-7)= (63-5x)/(x²-49)
Имеем конечную арифметическую прогрессию с первым членом -111, разностью арифметической прогрессии 1 (разница между двумя последовательными целыми числами) и суммой 339, нужно найти последний член данной прогрессии
- не подходит, количество членов прогрессии не может быть отрицательным
ответ: 114
второй на смекалку)
(так как слагаемые последовательные целые числа, и меньшее из них отрицательное, а сумма положительна, то последнее из них тоже положительное, иначе они б в сумме дали отрицательное число как сумму отрицательных числе, а не положительное)
далее -111+(-110)+.+0+1+2+...+110+111+112+...+х=
(-111+111)+(-110+110)+(-99+99)+(-1+1)+0+112+113+114+.. + х=
0+0+0+....+0+0+112+113+114+..+х
=112+113+..+х
т.е каждому отрицательному найдется в "противовес" положительное, которое в сумме вместе с ним даст 0,
и фактически наша сумма равна 112+113+...+х (*)
так как наименьшее из слагаемых (*) трицифровое ,и наша сумма трицифровое число, то мы последовательно сравнивая суммы
, найдем его очень быстро
112=112
112+113=225 - меньше
112+113+114=339 -- совпало
значит искомое число х равно 114
ответ: 114