1. 2а3 – 8а 2. 16 с3 – с
3. 0,16 х2 – 25у2
4. 4а2с6 – 0,01b10
5. 100 -20c + c2
6. b4 + 2b2c +c2
7. a3 – b3c3
8. 27a3 + b6
9. x3 – 6x2 + 12x - 8
10. x3 + 9x + 27x + 27
11. x4 -16
12. a2 – b2 – a – b
13. a3 + a2 – a – 1
14. 3ab + 15b – 3a - 15
15. - 12b3 – 12b2 – 3b
16. x2(x – 2) – 18x(x – 2) + 81x(x – 2)
и обьясните как вы все это сделали
(x - 2)(x ^ 2 + |x - 1|) - x ^ 2 + 2x = 0 x ^ 3 + x|x - 1|- 2x ^ 2 - 2x| * x - 1| - x ^ 2 + 2x = 0 x ^ 3 + x
x|x - 1|- 3x ^ 2 - 2x| * x - 1| + 2x = 0 x ^ 3 + x
x * (x - 1) - 3x ^ 2 - 2(x - 1) + 2x = 0,
x - 1 >= 0 x ^ 3 + x(- (x - 1)) - 3x ^ 2 - 2x * (- (x - 1)) + 2x = 0
x - 1 < 0 x = 2 x = - 1,
x >= 1 x = 1 х = 1 х = 2 ,
X <1 x = 1 x = 2 x
x = 1 x = 2 Рішення x 1 =1,x 2 =2
x/(x + 5) - (1x + 51)/(5 - x) = 50/(x ^ 2 - 25) x/(x + 5) - (1x + 51)/(5 - x) = 50/(x ^ 2 - 25), x = - 5, x = 5 x/(x + 5) - (x + 51)/(5 - x) = 50/(x ^ 2 - 25) x/(x + 5) - (x + 51)/(5 - x) * 50/(x ^ 2 - 25) = 0 x/(x + 5) * (x + 51)/(- (x - 5)) * 50/((x - 5)(x + 5)) - 0 x/(x + 5) + (x + 51)/(x - 5) - 50/((x - 5)(x + 5)) = 0 (x(x - 5) + (x + 5)(x + 51) - 50)/((x - 5)(x + 5)) = 0 (x ^ 2 - 5x + x ^ 2 + 51x + 5x + 255 - 50)/((x - 5)(x + 5)) = 0 (2x ^ 2 + 41x + 10x + 205)/((x - 5)(x + 5)) = 0 (x(2x + 47) + 5(2x + 47))/((x - 5)(x + 5)) = 0 ((2x + 41)(x + 5))/((x - 5)(x + 5)) = 0 (2x + 41)/(x - 5) = 0 2x + 41 = 0 2x = - 41 x=- 41 2 ,x=-5.x=5 Рішення x = - 41/2 Альтернативна форма 1 1 x = - 20 - x=-20 5
а)
а² - 8a + aв - 8в = (а² - 8a) + (aв - 8в) = а*(а - 8) + в*(а - 8) = (а - 8)(а + в),
или:
а² - 8a + aв - 8в = (а² + ав) - (8а + 8в) = а*(а + в) - 8*(а + в) = (а - 8)(а + в),
при а = 0,8; в = 1,2:
(0,8 - 8)(0,8 + 1,2) = -7,2 * 2 = -14,4,
б)
4c² + 5dc - 4cd - 5d² = (4c² + 5dc) - (4cd + 5d²) =
= с*(4с + 5d) - d*(4c + 5d) = (c - d)(4c + 5d),
или:
4c² + 5dc - 4cd - 5d² = (4c² - 4cd) + (5dc - 5d²) =
= 4c*(c - d) + 5d*(c- d) = (c - d)(4c + 5d),
при с = 0,6; d = - 0,4:
(0,6 + 0,4)(4*0,6 - 5*0,4) = 1 * (2,4 - 2) = 0,4