В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
StrangeLis
StrangeLis
24.09.2021 21:04 •  Алгебра

1)2cos^{2}x=1+sinx 2)cos2x+sinx=0 3)cos2x-cosx=0 4) 2cos^{2}x=1-sinx 5)cos2x/3-5cosx/3-2=0 6)sin3x=cosx 7) 2cos^{2}3x+sin3x-1=0 8)2sin^{2}x+cos4x=0

Показать ответ
Ответ:
даночкаа88
даночкаа88
24.05.2020 11:16

1) 2cos²x = 1 + sinx

2(1-sin²x) = 1 + sinx

2 - 2sin²x = 1 + sinx

2sin²x + sinx - 1 = 0

sinx обозначим t, t ∈ [-1;1]

2t² + t - 1 = 0

D = 1 + 8 = 9

t = (-1±3)/4 = 1/2 или -1

sinx = 1/2  x = ((-1)^k)*arcsin(1/2) + πk  x = ((-1)^k)π/6 + πk, k ∈ Z

sinx = -1   x = -π/2 + 2πk, k ∈ Z

ответ: ((-1)^k)π/6 + πk; -π/2 + 2πk, k ∈ Z

2) cos2x + sinx = 0

1 - 2sin²x + sinx = 0

2sin²x - sinx - 1 = 0

sinx обозн. t, t ∈ [-1;1]

2t² - t - 1 = 0

D = 1 + 8 = 9

t = (1±3)/4 = 1 или -1/2

sinx = 1  x = π/2 + 2πk, k ∈ Z

sinx = -1/2  x = ((-1)^k)arcsin(-1/2) + πk   x = ((-1)^(k+1))π/6 + πk, k ∈ Z

ответ: ((-1)^(k+1))π/6 + πk; π/2 + 2πk, k ∈ Z

3) cos2x - cosx = 0

2cos²x - 1 - cosx = 0

2cos²x - cosx - 1 = 0

cosx обозн. t, t ∈ [-1;1]

2t² - t - 1 = 0

D = 1 + 8 = 9

D = (1±3)/4 = -1/2 или 1

cosx = -1/2   x = ±arccos(-1/2) + 2πk   x = ±2π/3 + 2πk, k ∈ Z

cosx = 1  x = 2πk, k ∈ Z

ответ: ±2π/3 + 2πk; 2πk, k ∈ Z

4) 2cos²x = 1 - sinx 

2(1 - sin²x) = 1 - sinx

2 - 2sin²x = 1 - sinx

2sin²x - sinx - 1 = 0

sinx обозн. t, t ∈ [-1;1]

2t² - t - 1 = 0

D = 1 + 8 = 9

t = (1±3)/4 = 1 или -1/2

sinx = 1   x = π/2 + 2πk, k ∈ Z

sinx = -1/2  x = ((-1)^k)arcsin(-1/2) + πk   x = ((-1)^(k+1))π/6 + πk, k ∈ Z

ответ: ((-1)^(k+1))π/6 + πk; π/2 + 2πk, k ∈ Z

5) Если деление на три под косинусом, тогда:

cos(2x/3) - 5cos(x/3) - 2 = 0

2cos²(x/3) - 1 - 5cos(x/3) - 2 = 0

2cos²(x/3) - 5cos(x/3) - 3 = 0

cos(x/3) обозн. t, t ∈ [-1;1]

2t² - 5t - 3 = 0

D = 25 + 24 = 49

t = (5±7)/4 = 3 или -1/2  (3 не удовл) 

cos(x/3) = -1/2  x/3 = ±arccos(-1/2) + 2πk  x/3 = ±2π/3 + 2πk  x = ±π + 6πk, k ∈ Z

ответ: ±π + 6πk, k ∈ Z

6) sin3x = cosx

По формуле приведения

cos(π/2 - 3x) = sin3x - подставим вместо sin3x

cos(π/2 - 3x) = cosx

cos(π/2 - 3x) - cosx = 0

По формуле, сделаем из суммы произведение:

-2sin((π/2 - 3x + x)/2)sin((π/2 - 3x - x)2) = 0

sin(π/4 - x)sin(π/4 - 2x) = 0

По отдельности приравниваем к нулю:

sin(π/4 - x) = 0  π/4 - x = πk  -x = -π/4 + πk   x = π/4 - πk, k ∈ Z

sin(π/4 - 2x) = 0  π/4 - 2x = πk  -2x = -π/4 + πk  x = π/8 - πk/2, k ∈ Z

ответ: π/4 - πk; π/8 - πk/2, k ∈ Z (в ответе может быть +πk, но это значения не имеет)

7) 2cos²3x + sin3x - 1 = 0

2(1-sin²3x) + sin3x - 1 = 0

2sin²3x - sin3x - 1 = 0

sin3x обозн. t, t ∈ [-1;1]

2t² - t - 1 = 0

D = 1 + 8 = 9

t = (1±3)/4 = 1 или -1/2

sin3x = 1  3x = π/2 + 2πk  x = π/6 + 2πk/3, k ∈ Z

sin3x = -1/2  3x = ((-1)^(k+1))π/6 + πk   x = ((-1)^(k+1))π/18 + πk/3, k ∈ Z

ответ: π/6 + 2πk/3; ((-1)^(k+1))π/18 + πk/3, k ∈ Z

8) 2sin²x + cos4x = 0

По формуле понижения степени: sin²x = (1-cos2x)/2  - подставляем в уравнение:

1-cos2x + cos4x = 0

cos4x - cos2x + 1 = 0

2cos²2x - 1 - cos2x + 1 = 0

2cos²2x - cos2x = 0

cos2x(2cos2x - 1) = 0

cos2x = 0  2x = π/2 + πk  x = π/4 + πk/2, k ∈ Z

cos2x = 1/2  2x = ±π/3 + 2πk  x = ±π/6 + πk, k ∈ Z

ответ: π/4 + πk/2; ±π/6 + πk, k ∈ Z

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота