Примем работу за 1. Пусть производительность первого экскаватора (объём выполненной работы за 1 час) равна х, а второго экскаватора - у. Два экскаватора, работая совместно (х+у), могут вырыть котлован за 48 часов, то есть сделать 100% работы или 100%÷100%=1: 48(х+у)=1 (1)
Если первый проработает 40 часов, выполнив объём работы 40х, а второй 30 часов, выполнив объём работы 30у, то будет выполнено 75% работы или 75%÷100÷=0,75: 40х+30у=0,75 (2)
Составим и решим систему уравнений (методом подстановки): { 48(х+у)=1 { 40х+30у=0,75
{х+у=1/48 {40х+30у=0,75
{х=1/48-у {40х+30у=0,75
Подставим значение х во второе уравнение: 40(1/48-у)+30у=0,75 40/48-40у+30у=0,75 5/6-10у=0,75 -10у=0,75-5/6=75/100-5/6=3/4-5/6=3×3/12 - 5×2/12=9/12-10/12=-1/12 -10у=-1/12 10у=1/12 у=1/12÷10=1/120 - производительность второго экскаватора. Тогда он выполнит весь объем работы (равный 1) за: 1÷1/120=120 часов. ОТВЕТ: второй экскаватор, работая отдельно, сможет выполнить всю работу за 120 часов.
!Чтобы посчитать время работы первого экскаватора, подставим значение у в первое уравнение: х=1/48-у=1/48-1/120=5/240-2/240=3/240=1/80 1÷1/80=80 (часов)
Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе. глава 5. решение треугольников 5.1. прямоугольный треугольник аксиомы 1.4 и 2.1 позволяли приписывать отрезкам и углам числа, равные их мерам, то есть измерять отрезки и углы. до сих пор не было связи между величинами углов и длинами отрезков. с введением треугольников появляется возможность связать величины градусных мер углов треугольника и длин его сторон. рассмотрим соотношения между сторонами и углами прямоугольного треугольника. 1 рисунок 5.1.1. прямоугольный треугольник. косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе. пусть угол (bac) – искомый острый угол. так, например, для угла bac (рис. 5.1.1) теорема 5.1. косинус угла зависит только от градусной меры угла и не зависит от расположения и размеров треугольника. доказательство пусть abc и a1b1c1 – два прямоугольных треугольника с одним и тем же углом при вершинах a и a1, равным α . построим треугольник ab2c2, равный треугольнику a1b1c1, как показано на рис. 5.1.2. это возможно по аксиоме 4.1. так как углы a и a1 равны, то b2 лежит на прямой ab. прямые bc и b2c2 перпендикулярны прямой ac, и по следствию 3.1 они параллельны. по теореме 4.13 2 рисунок 5.1.2. к теореме 5.1. но по построению ac2 = a1c1; ab2 = a1b1, следовательно, что и требовалось доказать. теорема 5.2. теорема пифагора. в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. модель 5.2. доказательство теоремы пифагора. на рисунке 5.1.3 изображен прямоугольный треугольник. bc и ac – его катеты, ab – гипотенуза. по теореме bc2 + ac2 = ab2. доказательство пусть abc – данный прямоугольный треугольник с прямым углом при вершине c. 3 рисунок 5.1.3. к доказательству теоремы пифагора. проведем высоту cd из вершины c. по определению из треугольника acd и из треугольника abc. по теореме 5.1 и, следовательно, . аналогично из δ cdb, из δ acb, и отсюда ab · bd = bc2. складывая полученные равенства и, замечая, что ad + bd = ab, получаем ac2 + bc2 = ab · ad + ab · bd = ab (ad + bd) = ab2. теорема доказана. в прямоугольном треугольнике любой из катетов меньше гипотенузы. косинус любого острого угла меньше единицы. пусть [bc] – перпендикуляр, опущенный из точки b на прямую a, и a – любая точка этой прямой, отличная от c. отрезок ab называется наклонной, проведенной из точки b к прямой a. точка c называется основанием наклонной. отрезок ac называется проекцией наклонной. с теоремы пифагора можно показать, что если к прямой из одной точки проведены перпендикуляр и наклонные, то любая наклонная больше перпендикуляра, равные наклонные имеют равные проекции, из двух наклонных больше та, у которой проекция больше. синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе. по определению тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему. для угла (bac) прямоугольного треугольника, изображенного на рис. 5.1.1, имеем так же как и косинус, синус угла и тангенс угла зависят только от величины угла. 4 рисунок 5.1.4. из данных определений получаем следующие соотношения между углами и сторонами прямоугольного треугольника: если α – острый угол прямоугольного треугольника, то катет, противолежащий углу α , равен произведению гипотенузы на sin α; катет, прилежащий к углу α , равен произведению гипотенузы на cos α; катет, противолежащий углу α , равен произведению второго катета на tg α.
Два экскаватора, работая совместно (х+у), могут вырыть котлован за 48 часов, то есть сделать 100% работы или 100%÷100%=1:
48(х+у)=1 (1)
Если первый проработает 40 часов, выполнив объём работы 40х, а второй 30 часов, выполнив объём работы 30у, то будет выполнено 75% работы или 75%÷100÷=0,75:
40х+30у=0,75 (2)
Составим и решим систему уравнений (методом подстановки):
{ 48(х+у)=1
{ 40х+30у=0,75
{х+у=1/48
{40х+30у=0,75
{х=1/48-у
{40х+30у=0,75
Подставим значение х во второе уравнение:
40(1/48-у)+30у=0,75
40/48-40у+30у=0,75
5/6-10у=0,75
-10у=0,75-5/6=75/100-5/6=3/4-5/6=3×3/12 - 5×2/12=9/12-10/12=-1/12
-10у=-1/12
10у=1/12
у=1/12÷10=1/120 - производительность второго экскаватора.
Тогда он выполнит весь объем работы (равный 1) за: 1÷1/120=120 часов.
ОТВЕТ: второй экскаватор, работая отдельно, сможет выполнить всю работу за 120 часов.
!Чтобы посчитать время работы первого экскаватора, подставим значение у в первое уравнение:
х=1/48-у=1/48-1/120=5/240-2/240=3/240=1/80
1÷1/80=80 (часов)