вершина параболы в точке (1, 5 ; -0,5) , ось абсцисс пересекает в двух точках ( 1 ; 0) и (2 ; 0) || 1 и 2 корни трехчлена 2x² - 6x + 4 || ,а ось ординат в точке (0; 4) пересекает в двух точках
3. Все целые числа кроме { -1 ; 0 ; 1 ; 2 ; 3 }
другое Найдите целые решения неравенства x² - 2x -6 ≤ 0
1) Разрешим наше дифференциальное уравнение относительно производной - уравнение с разделяющимися переменными Воспользуемся определением дифференциала
Интегрируя обе части уравнения, получаем
- общее решение
Разделяем переменные
интегрируя обе части уравнения, получаем
- общий интеграл
Решение задачи Коши нет, т.к. при х=0 логарифм ln0 не существует
Пример 3. Убедимся, является ли дифференциальное уравнение однородным.
Итак, дифференциальное уравнение является однородным. Исходное уравнение будет уравнением с разделяющимися переменными если сделаем замену , тогда
Подставляем в исходное уравнение
Получили уравнение с разделяющимися переменными
Воспользуемся определением дифференциала
Разделяем переменные
Интегрируя обе части уравнения, получаем
Обратная замена
- общий интеграл
Пример 4. Это дифференциальное уравнение второго порядка с постоянными коэффициентами также однородное. Воспользуемся методом Эйлера Пусть , тогда будем иметь характеристическое уравнение следующего вида:
Тогда общее решение будет иметь вид:
- общее решение Пример 5. Аналогично с примером 4) Пусть , тогда получаем
2. График y = 2x² - 6x + 4 = 2(x -1,5)²- 0,5 изображен неправильно
вершина параболы в точке (1, 5 ; -0,5) , ось абсцисс пересекает в двух точках ( 1 ; 0) и (2 ; 0) || 1 и 2 корни трехчлена 2x² - 6x + 4 || ,а ось ординат в точке (0; 4) пересекает в двух точках
3. Все целые числа кроме { -1 ; 0 ; 1 ; 2 ; 3 }
другое Найдите целые решения неравенства x² - 2x -6 ≤ 0
ответ : { -1 ; 0 ; 1 ; 2 ; 3 }
5. Решите неравенство : (x² -5x +6) / ( x² -7x) ≤ 0
- - - - - - -
(x² -5x +6) / ( x² -7x) ≤ 0 ⇔(x-2)(x-3) / x(x-7) ≤ 0 ⇔
{ x ( x - 2)(x - 3) ( x-7 ) ≤ 0 ; x( x - 7 ) ≠ 0 .
решается методом интервалов
+ + + + + 0 - - - - - [2] + + + + + [3] - - - - - -(7 ) + + + + + + +
ответ : x ∈ (0 ; 2] ∪ [3 ; 7) .
Разрешим наше дифференциальное уравнение относительно производной
- уравнение с разделяющимися переменными
Воспользуемся определением дифференциала
Интегрируя обе части уравнения, получаем
- общее решение
Разделяем переменные
интегрируя обе части уравнения, получаем
- общий интеграл
Решение задачи Коши нет, т.к. при х=0 логарифм ln0 не существует
Пример 3.
Убедимся, является ли дифференциальное уравнение однородным.
Итак, дифференциальное уравнение является однородным.
Исходное уравнение будет уравнением с разделяющимися переменными если сделаем замену
, тогда
Подставляем в исходное уравнение
Получили уравнение с разделяющимися переменными
Воспользуемся определением дифференциала
Разделяем переменные
Интегрируя обе части уравнения, получаем
Обратная замена
- общий интеграл
Пример 4.
Это дифференциальное уравнение второго порядка с постоянными коэффициентами также однородное.
Воспользуемся методом Эйлера
Пусть , тогда будем иметь характеристическое уравнение следующего вида:
Тогда общее решение будет иметь вид:
- общее решение
Пример 5.
Аналогично с примером 4)
Пусть , тогда получаем
Общее решение:
Найдем производную функции
Подставим начальные условия
- частное решение