Так как здесь присутствует вычитание. Сначала из меньшего значения x вычитаем большее значение y, так мы получим минимальный предел выражения x-y. Потом из большего значения x вычитаем меньшее значение y, так мы получим максимальный предел значения x-y.
БЫЛО ДВА СОСУДА: Пусть изначально было процентное содержание яблочного сока в первом сосуде - Х %, а во втором - Y %.
1 сосуд 2 сосуд
объем смеси ( л) 1 2
содерж. сока (%) X Y
объем сока в смеси( л) 0,01X 0,02 Y
ИЗ СОДЕРЖИМОГО 1 и 2 СОСУДОВ ПРИГОТОВИЛИ:
1 смесь 2 смесь
объем смеси ( л) 0,5 2,5
содерж. сока (%) 40 88
объем сока в смеси( л) 0,5*0,4 =0,2 2,5*0,88 = 2,2
0,01X + 0,02 Y = 0,2 + 2,2 0,01X + 0,02 Y = 2,4 X + 2 Y = 240 из уравнения следует, что Х не может быть меньше 40, иначе 2 Y будет больше 200 => Y будет больше 100 %, но этого не может быть, т.к. максимальное содержание сока в смеси - 100%. С другой стороны изначально хотя бы в одном сосуде процентное содержание яблочного сока не может превышать 40%. Если бы в обоих сосудах процентное содержание яблочного сока было больше 40%, то мы не получим из них 40-процентную смесь смесь. Пусть в первом сосуде находилась 40% смесь сока, тогда 40 + 2 Y = 240 2 Y = 200 Y = 100
Если во втором сосуде находилась 40% смесь сока, тогда X + 2 * 40 = 240 X + 80 = 240 X = 240 - 80 X = 160 ( этого не может быть)
ответ: в первом сосуде была 40% смесь сока, во втором - 100% сок.
1) 8 < 2x+y < 30
2) 6 < xy < 48
3) -3 < x-y < 6
Объяснение:
3 < x < 8
2 < y < 6
1) 2x+y
сначала вычислим минимальный предел:
2*3+2=8;
затем максимальный:
8*3+6=30.
Получится 8 < 2x+y < 30
2) xy
сначала вычислим минимальный предел:
3*2=6;
затем максимальный:
8*6=48.
Получится 6 < xy < 48
3) x-y
Так как здесь присутствует вычитание. Сначала из меньшего значения x вычитаем большее значение y, так мы получим минимальный предел выражения x-y. Потом из большего значения x вычитаем меньшее значение y, так мы получим максимальный предел значения x-y.
сначала вычислим минимальный предел:
3-6=-3;
затем максимальный:
8-2=6.
Получится -3 < x-y < 6
1 сосуд 2 сосуд
объем смеси ( л) 1 2
содерж. сока (%) X Y
объем сока
в смеси( л) 0,01X 0,02 Y
ИЗ СОДЕРЖИМОГО 1 и 2 СОСУДОВ ПРИГОТОВИЛИ:
1 смесь 2 смесь
объем смеси ( л) 0,5 2,5
содерж. сока (%) 40 88
объем сока
в смеси( л) 0,5*0,4 =0,2 2,5*0,88 = 2,2
0,01X + 0,02 Y = 0,2 + 2,2
0,01X + 0,02 Y = 2,4
X + 2 Y = 240
из уравнения следует, что Х не может быть меньше 40, иначе 2 Y будет больше 200 => Y будет больше 100 %, но этого не может быть, т.к. максимальное содержание сока в смеси - 100%.
С другой стороны изначально хотя бы в одном сосуде процентное содержание яблочного сока не может превышать 40%. Если бы в обоих сосудах процентное содержание яблочного сока было больше 40%, то мы не получим из них 40-процентную смесь смесь.
Пусть в первом сосуде находилась 40% смесь сока, тогда
40 + 2 Y = 240
2 Y = 200
Y = 100
Если во втором сосуде находилась 40% смесь сока, тогда
X + 2 * 40 = 240
X + 80 = 240
X = 240 - 80
X = 160 ( этого не может быть)
ответ: в первом сосуде была 40% смесь сока, во втором - 100% сок.