(1+4+4^2...+4^15)/(1+4+4^2...+4^7)
Задание 1: в решении задачи используется формула (выбери ответ)
суммы конечной арифметической прогрессии
суммы конечной геометрической прогрессии
рекуррентная формула n члена прогрессии
Задание 2: Отметь выражение, полученное при вычислении дроби
(4^16-1)/(4^8-1)
(4^7-1)/(4^15-1)
(4^15-1)/(4^7-1)
Задание 3: Запиши результат
Объяснение:
Выражаем из верхнего уравнения переменную "у":
Подставляем полученное выражение в нижнее уравнение вместо "у":
Раскрываем квадрат разности двух выражений, пользуясь следующей формулой:
Приведём подобные слагаемые. Для этого вынесем общий множитель за скобки:
Выполним сложение в скобке и перенесём слагаемое 13 со знаком минус в левую часть уравнения:
Выполним вычитание:
Разделив все части нижнего уравнения на 6, получим:
Теперь разделим все части нижнего уравнения на 2 для того, чтобы получить приведённое квадратное уравнение:
Решаем нижнее уравнение по теореме Виета. Согласно ей, сумма корней приведённого квадратного уравнения равна коэффициенту при "х", взятому с противоположным знаком, а их произведение — свободному члену:
Минус перед скобкой и минус после скобки дают плюс:
Корнями этой системы являются числа 1/2 и 2.
Мы нашли два значения переменной "х". Теперь подставим каждое из них в верхнее уравнение:
Мы получили две пары корней:
Они являются решениями системы.
2) ∠С=90*потому,что он опирается на диаметр.ΔAOC равносторонний потому,что все стороны равны радиусу., поэтому ∠A=60*, тогда ∠B=30*
ответ.30*
3)Обозначим искомые углы α,β. пусть они смежные,тогда α+β=180*
2α+β=230* по условию (вертикальные углы равны) Из первого равенства β=180*-α, подставим во второе получим 2α+180*-α=230, отсюда α=50*,β=180*-50*=130*. ответ.50*,130*,50*,130*.