В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Apple019
Apple019
03.03.2023 03:59 •  Алгебра

1.4. изобразите на координатной плоскости область, задаваемую неравенствами и и аналитически найдите такое p, при котором отрезок прямой x=p, лежащей внутри области, имеет наибольшую длину

Показать ответ
Ответ:
Школьник5432467
Школьник5432467
29.09.2020 01:47
См. рисунок в приложении.
Строим границы указанных областей.
у=2х²+4х-1 - парабола, ветви вверх, вершина в точке (-1;-3)
Парабола разбивает плоскость хОу на две части
внутреннюю и внешнюю.
Чтобы узнать какая из этих областей удовлетворяет неравенству, выбираем произвольную точку, например (0;0) и подставляем её координаты в неравенство
0≥-1 - верно.
Значит область, определяемая неравенством  у≥ 2х²+4х-1, содержит точку (0;0). Это внутренняя часть параболы.

Строим прямую х+у=2. Она также разбивает плоскость хОу на две полуплоскости.
Область определяемая неравенством х+у≥2 расположена ниже прямой.
Координаты точки  (0;0)  удовлетворяют неравенству х+у≤2:
0+0≤2 - верно.

Наибольшую длину имеет отрезок АВ, лежащий на прямой х=-1
О т в е т.  р=-1

1.4. изобразите на координатной плоскости область, задаваемую неравенствами и и аналитически найдите
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота