Пусть а- наименьший катет треугольника, d-разность арифметической прогрессии.Тогда второй катет будет равен а+d, a гипотенуза равна a+2d. Тогда периметр треугольника будет равен: а+а+d+а+2d=120 3a+3d=120 //уростим, разделив все равенство на 3 а+d=40 a=40-d Т.к. треугольник прямоугольный, а катеты и гипотенуза равны а;а+d и a+2d соответственно, то по т.Пифагора: (а+2d)^2=a^2+(a+d)^2 a^2+4ad+4d^2=a^2+a^2+2ad+d^2 -a^2+2ad+3*d^2=0 a^2-2ad-3d^2=0 Подставим в это ур-е равенство: a=40-d (40-d)^2-2d(40-d) - 3d^2=0 1600-80d+d^2-80d+2d^2- 3d^2=0 -160d=-1600 d=10 ответ: разность данной арифметической прогрессии равна 10
Не уследил 2^n - оканчивается на 2,4,8,6 3^n -оканчивается на 3,9,7,1
числа рода 2^n при делений на 11 остатки равны 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, и.т.д нас интересует 2^2012 она сравним по модулю то есть по равным остаткам 2^2012 можем протолкнуть в наш период 10*200 +2 =2002. то есть наше число повториться после первого цикла затем вторая цифра и будет нашим остатком то есть 2, 4, 8, 5, 10, 9, 7, 3, 6, 1,
так же при делений рода 3^n = 3, 9, 5, 4, 1 значит наш остаток равен 9 , и наше число можно записать a=11*k+4+11*z+9 то есть здесь k и z такие числа что это целая часть при делений числа а на 11 , видно что 4+9=13 не делиться на 11 нацело , значит остаток равен 2
а+а+d+а+2d=120
3a+3d=120 //уростим, разделив все равенство на 3
а+d=40
a=40-d
Т.к. треугольник прямоугольный, а катеты и гипотенуза равны а;а+d и a+2d соответственно, то по т.Пифагора:
(а+2d)^2=a^2+(a+d)^2
a^2+4ad+4d^2=a^2+a^2+2ad+d^2
-a^2+2ad+3*d^2=0
a^2-2ad-3d^2=0
Подставим в это ур-е равенство: a=40-d
(40-d)^2-2d(40-d) - 3d^2=0
1600-80d+d^2-80d+2d^2- 3d^2=0
-160d=-1600
d=10
ответ: разность данной арифметической прогрессии равна 10
2^n - оканчивается на 2,4,8,6
3^n -оканчивается на 3,9,7,1
числа рода
2^n при делений на 11 остатки равны 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, и.т.д нас интересует 2^2012 она сравним по модулю то есть по равным остаткам 2^2012 можем протолкнуть в наш период 10*200 +2 =2002. то есть наше число повториться после первого цикла затем вторая цифра и будет нашим остатком то есть 2, 4, 8, 5, 10, 9, 7, 3, 6, 1,
так же при делений рода 3^n = 3, 9, 5, 4, 1 значит наш остаток равен 9 ,
и наше число можно записать
a=11*k+4+11*z+9 то есть здесь k и z такие числа что это целая часть при делений числа а на 11 , видно что 4+9=13 не делиться на 11 нацело , значит остаток равен 2