в) (а-2√(3а)+3)/(а-3)=(√а-√3)²/(а-3) можно оставить так или так: (а-2√(3а)+3)/(а-3)=(√а-√3)²/((√а)²-(√3)²)=(√а-√3)²/(√а-√3)(√а+√3)=(√а-√3)/(√а+√3) или так: (√а-√3)/(√а+√3)=(√а-√3)(√а+√3)/(√а+√3)(√а+√3)=(а-3)/(√а+√3)² как больше нравится
Решение: 1) ОДЗ для данной функции определено на всей числовой прямой (D(f) ∈ R) 2) Функция ни четна, ни нечетна 3) Точки пересечения с осью OX при x₁ = 0; x₂ = 3. Точки пересечения с осью OY в y = 0 4) (x-3)^2 в данной функции будет иметь постоянно положительный знак, т.к. оно находится под квадратом. Значит, знак всей функции зависит только от множителя x. Там, где x>0, функция положительна; соответственно, где x<0, там и y<0. 5) Мы нашли точки экстремума. Теперь найдем промежутки возрастания/убывания функции:
а) (√а+1)/(а-1)=(√а+1)/(√а+1)(√а-1)=1/(√а-1)
б) (13-√13)/√13=√13-1
в)
(а-2√(3а)+3)/(а-3)=(√а-√3)²/(а-3) можно оставить так
или так:
(а-2√(3а)+3)/(а-3)=(√а-√3)²/((√а)²-(√3)²)=(√а-√3)²/(√а-√3)(√а+√3)=(√а-√3)/(√а+√3)
или так:
(√а-√3)/(√а+√3)=(√а-√3)(√а+√3)/(√а+√3)(√а+√3)=(а-3)/(√а+√3)²
как больше нравится
2)
а) 3/(2√6)=(3√6)/(2*6)=(3√6)/(4*3)=√6/4
10/(√14-2)=10(√14+2)/(√14-2)(√14+2)=10(√14+2)/(14-4)=√14+2
3)
а) √5b^2,если b≤ 0
√5b^2=-b√5, b≤0
б) √(12а⁴)=√(3*4а⁴)=2а²√3
в) √(-а^5)=√(-а*а⁴)=а²√(-а), только если a≤0
г)
√((-а^3)(b^6)) ,если b>0
√((-а³)(b^6))=a*b³√(-а) только если a≤0
1) ОДЗ для данной функции определено на всей числовой прямой (D(f) ∈ R)
2) Функция ни четна, ни нечетна
3) Точки пересечения с осью OX при x₁ = 0; x₂ = 3.
Точки пересечения с осью OY в y = 0
4) (x-3)^2 в данной функции будет иметь постоянно положительный знак, т.к. оно находится под квадратом. Значит, знак всей функции зависит только от множителя x. Там, где x>0, функция положительна; соответственно, где x<0, там и y<0.
5)
Мы нашли точки экстремума. Теперь найдем промежутки возрастания/убывания функции:
+ - +
---------------------|-------------|------------------------>
1 3
Функция возрастает на промежутке: (-∞; 1] ∪ [3; +∞)
Функция убывает на промежутке: [1; 3]
Так как нет наибольших и наименьших значений у функции на всем промежутке, то область значений функции колеблется от (-∞; +∞).
График функции дан во вложениях.