То трафаретное решение. Просто обозначаешь за х скорость реки. Когда катер плывет против течения, то его скорость равна: 18-x;когда по течению, то 18+x. А плот имеет только одну скорость - скорость реки, т. е. х. Теперь выразим время, за которое катер идет против течения: t1=4/(18-x), по течению: t2=15/(18+x). 2/х - время, за которое проходит плот 2 км. Тогда по условию 4/(18-x)+15/(18+x)=2/х. Дальше приводим к общему знаменателю, приводим подобные члены, решаем квадратное уравнение, получаем 2 корня ( один отрицательный- не подходит), другой корень - ответ задачи. 4х (18+х) +15х (18-х) =2(18-х) (18+х) 72х+4х^2+270x-15x^2=648-2x^2 -9x^2+342x -648=0 - разделим на (-9): x^2- 38x+72=0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-38)2 - 4·1·72 = 1444 - 288 = 1156 Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня: x1 = ( 38 - √1156)/2·1 = 38 - 34 2 = 4/2 = 2 x2 = ( 38 + √1156 )/2·1 = 38 + 34 2 = 72/2 = 36. Видишь, оба корня положительны, поэтому надо подставить в основное уравнение и проверить: 4/(18-x)+15/(18+x)=2/х. Это сам(а). Удачи!
0,00(4) = 0,004 + 0,0004 + 0,00004 +... - сумма бесконечно убывающей геометрической прогрессии
b₁ = 0,004
b₂ = 0,0004
q = b₂/b₁ = 0,0004/0,004 = 0,1
S = b₁/(1 - q) = 0,004/(1 - 0,1) = 0,004/0,9 = 4/900 = 1/225
2,32 + 1/225 = 232/100 + 1/225 = 58/25 + 1/225 = 522/225 + 1/225 = 523/225
ответ: 2,32(4) = 523/225.
0,(47) = 0,47 + 0,0047 + 0,000047 + ... - сумма бесконечно убывающей геометрической прогрессии
b₁ = 0,47
b₂ = 0,0047
q = b₂/b₁ = 0,0047/0,47 = 0,01
S = b₁/(1 - q) = 0,47/(1 - 0,01) = 0,47/0,99 = 47/99
ответ: 0,(47) = 47/99.
Тогда по условию 4/(18-x)+15/(18+x)=2/х. Дальше приводим к общему знаменателю, приводим подобные члены, решаем квадратное уравнение, получаем 2 корня ( один отрицательный- не подходит), другой корень - ответ задачи.
4х (18+х) +15х (18-х) =2(18-х) (18+х)
72х+4х^2+270x-15x^2=648-2x^2
-9x^2+342x -648=0 - разделим на (-9):
x^2- 38x+72=0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-38)2 - 4·1·72 = 1444 - 288 = 1156
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = ( 38 - √1156)/2·1 = 38 - 34 2 = 4/2 = 2
x2 = ( 38 + √1156 )/2·1 = 38 + 34 2 = 72/2 = 36.
Видишь, оба корня положительны, поэтому надо подставить в основное уравнение и проверить: 4/(18-x)+15/(18+x)=2/х. Это сам(а). Удачи!