1.88 Дан треугольник с вершинами А(7; 5), B(-1; 5) и с(1; — ). 1) Найди величину угла А данного треугольника. 2) Используя два разных , покажи, что треугольник ABC яв- ляется прямоугольным. 3) Вычисли площадь треугольника ABC.
P = m/n. Пространство исходов упорядоченные пары чисел от 1 до 6, например: (1;6); (2;3), (6;5) и т.п. Всего таких исходов n = 6*6, A) m = 5*5. P = (5*5)/(6*6) = 25/36 Б) m = 1. Лишь одна пара (6;6) удовлетворяет условию. P = 1/(6*6) = 1/36. В) Удовлетворяет условию следующие исходы: (6,4),(4,6),(5,5), (6,5), (5,6), (6,6). m = 6. P = 6/(6*6) = 1/6. Г) Искомому значению удовлетворяет событие, противоположное предыдущему (В), поэтому ответом будет P = 1 - (1/6) = 5/6. Пояснение к Г) : События В) и Г) взаимно противоположные, т.е. они не пересекаются и в объединении дают все пространство исходов, так что P_в + P_г = 1.
a) x∈ (-∞;3)
b) x∈ (-∞;0] ∪ [4;+∞)
c) x∈ (-∞;0)∪(0;2/3)
d) x∈ [-1/2;1) ∪ (1;+∞)
Объяснение:
a) f(x)=√(-x+3);
-x+3≥0; -x≥-3; x≤3.
ОО: x∈(-∞;3).
b) f(x)=√(0,5x²-2x); 0,5x²-2x≥0; x(0,5x-2)≥0;
x≥0;
0,5x-2≥0; x≥2/0,5; x≥4; x∈[4;+∞);
x≤0;
0,5x-2≤0; x≤2/0,5; x≤4; x∈(-∞;0];
OO: x∈(-∞;0] ∪ [4;+∞);
c) f(x)=ln(2/x-3);
2/x-3>0; 2/x>3; x<2/3; x∈(-∞;2/3);
x≠0; x∈(-∞;0)∪(0;+∞)
OO: x∈(-∞;0)∪(0;+∞) ∩ (-∞;2/3) ⇒ x∈(-∞;0)∪(0;2/3)
d) f(x)=√(3/(x-1)+2);
3/(x-1)+2≥0; 3+2(x-1)≥0; x≥-1/2; x∈[-1/2;+∞)
x-1≠0; x≠1; x∈(-∞;1)∪(1;+∞)
OO: x∈[-1/2;+∞) ∩ (-∞;1)∪(1;+∞) ⇒ x∈[-1/2;1)∪(1;+∞)
Пространство исходов упорядоченные пары чисел от 1 до 6, например:
(1;6); (2;3), (6;5) и т.п.
Всего таких исходов n = 6*6,
A) m = 5*5. P = (5*5)/(6*6) = 25/36
Б) m = 1. Лишь одна пара (6;6) удовлетворяет условию. P = 1/(6*6) = 1/36.
В) Удовлетворяет условию следующие исходы: (6,4),(4,6),(5,5), (6,5), (5,6), (6,6). m = 6. P = 6/(6*6) = 1/6.
Г) Искомому значению удовлетворяет событие, противоположное предыдущему (В), поэтому ответом будет P = 1 - (1/6) = 5/6.
Пояснение к Г) : События В) и Г) взаимно противоположные, т.е. они не пересекаются и в объединении дают все пространство исходов, так что
P_в + P_г = 1.