В итоге, мы получили произведение трёх подряд идущих чисел, среди которых обязательно найдётся хотя бы одно чётное число и число делящееся на три. Следовательно, произведение трёх подряд идущих чисел будет кратно 6. Т.к. итоговое произведение получено из исходного многочлена путём равносильных преобразований, то делаем вывод: многочлен а³+3а²+2а кратен числу 6.
Пусть х- объем первого танкера, у- объем второго танкера, z- производительность насоса (работа за час). 3 насоса могут наполнить второй танкер за у/3z часов Т.к. четыре одинаковых насоса, работая вместе, наполнили нефтью первый танкер и треть второго танкера за 11 часов, то можем составить первое уравнение 4z*11=х+1/3у, или 44z=х+1/3у. Т.к. 3 насоса наполнили бы первый танкер, а затем один из них наполнил бы четверть второго танкера за 18ч, получаем второе уравнение х/3z+у/4z=18, или (умножим на 3z) х+3у/4=54z. Выразим и приравняем х: 44z-1/3*y=54z-3/4*y. приведем подобные 5/12*у=10z, умножаем на 4/5z, у/3z=8 ответ: 8 часов
a³+3a²+2a=a(a²+3a+2)=a(a+1)(a+2)
a²+3a+2=(a+1)(a+2)
D=3²-4*1*2=9-8=1
a₁=(-3+1)/2=-2/2=-1
a₂=(-3-1)/2=-4/2=-2
В итоге, мы получили произведение трёх подряд идущих чисел, среди которых обязательно найдётся хотя бы одно чётное число и число делящееся на три. Следовательно, произведение трёх подряд идущих чисел будет кратно 6. Т.к. итоговое произведение получено из исходного многочлена путём равносильных преобразований, то делаем вывод:
многочлен а³+3а²+2а кратен числу 6.
3 насоса могут наполнить второй танкер за у/3z часов
Т.к. четыре одинаковых насоса, работая вместе, наполнили нефтью первый танкер и треть второго танкера за 11 часов, то можем составить первое уравнение 4z*11=х+1/3у, или 44z=х+1/3у.
Т.к. 3 насоса наполнили бы первый танкер, а затем один из них наполнил бы четверть второго танкера за 18ч, получаем второе уравнение х/3z+у/4z=18, или (умножим на 3z) х+3у/4=54z. Выразим и приравняем х: 44z-1/3*y=54z-3/4*y. приведем подобные 5/12*у=10z, умножаем на 4/5z, у/3z=8
ответ: 8 часов