№1
A ) Число 4 является решением неравенства 2x– 11≥0 а) да б) нет в) нельзя ответить на поставленный во Являются ли равносильными неравенства 3,2 + 0,9x<4x – 4,6 и 0,9x – 4x< - 3,2 – 4,6? а) да б) нет в) нельзя ответить на поставленный во Являются ли равносильными неравенства 11x – 3x + 9x>7 +2 – 21 и 17x> - 12? а) да б) нет в) нельзя ответить на поставленный во Являются ли равносильными неравенства 2 +9x<11 и 10 + 45x>55?
а) да б) нет в) нельзя ответить на поставленный во Являются ли равносильными неравенства – 2x>24 и x< - 12? а) да б) нет в) нельзя ответить на поставленный во
Для решения задачи через квадратное уравнение, необходимо обозначит скорость течения реки как х км/ч.
В таком случае, скорость теплохода по течению будет равна: (18 + х) км/ч.
Скорость теплохода против течения реки составит: (18 - х) км/ч.
Получим уравнение суммы времени.
(50 / (18 + х)) + (8 / (18 - х)) = 3
900 - 50 * х + 144 + 8 * х = -3 * х^2 + 972.
3 * х^2 - 42 * х + 72 = 0.
х^2 - 14 * х + 24 = 0.
Д^2 = (-14)^2 - 4 * 1 * 24 = 196 + 96 = 100.
Д = 10.
х = (14 - 10) / 2 = 4 / 2 = 2 км/ч.
Скорость течения реки 2 км/ч.
у= (-1/3)·x+7
Объяснение:
1) По условию график искомой линейной функции параллелен к функции у= (-1/3)·x+8 и поэтому угловой коэффициент равен к (-1/3). Тогда формула искомой линейной функции имеет вид
у= (-1/3)·x+b, b - пока неизвестно.
2) График искомой линейной функции проходит через точку А(6;5). Если график функции проходит через некоторую точку, то координаты этой точки должны удовлетворить уравнение функции. Поэтому подставляем координаты точки А в уравнение функции и находим b:
5 = (-1/3)·6 + b
5 = - 2 + b
b = 7.
Уравнение искомой функции: у= (-1/3)·x+7.