1. а) Вычислите, D+ b) Сколькими можно распределить между 3 спортсменами три призовых места 2. а) Найдите периле три слагаемых в биномиалном разложений при воарастании степени и запишите куффициент при х, 1) (3x+1) 2) (1-2) b) Используя регуллатья предъядуши. Действий, найдите коэффициент при хв биномиально разложении (3x+11-х). . Асия собрала 11ети: 9 ромаек и 12 неабуу док. Сколькими можно составить букет из его, если: а) и букете 6 ромашки и 4 незабудки; b) в букете как минимум должна быть 3 неабудки! Дескриптор Бал
Объяснение:
К 1 января 20951 г. жители получат:
1,3*0,07 = 0,091 млн = 91 тыс золотых.
И уже с этих процентов они могут купить досок на 79 тыс золотых.
В 20952 году, с 1 января до 1 июля, за 7 месяцев они получат:
91*7/12 = 53,0833 тыс ≈ 53 тыс золотых.
Всего за 2 года они получат:
91 + 53 = 144 тыс золотых.
После покупки у них останется:
144 - 79 = 65 тыс золотых.
ответ: 144 тыс получат, 65 тыс останется, они смогут купить доски.
А если в 20951 году дракон ещё награбит, то можно пересчитать сумму, и тогда на 2-ой год жители получат ещё больше.
3 или 4 слагаемых с минусами.
Объяснение:
Я уже решал эту задачу.
Мы можем поставить 1, 2 или 3 минуса.
Если поставить один или три минуса, то получится:
(a - b + c + d)^2 = ((a+c+d) - b)^2 = (a+c+d)^2 - 2b(a+c+d) + b^2
Или, с тремя минусами:
(a - b - c - d)^2 = (a - (b+c+d))^2 = a^2 - 2a(b+c+d) + (b+c+d)^2
В обоих случаях получается три слагаемых с минусами.
Если же поставить два минуса, то получится:
(a + b - c - d)^2 = ((a+b) - (c+d))^2 = (a+b)^2 - 2(a+b)(c+d) + (c+d)^2 =
= (a+b)^2 - 2(ac+bc+ad+bd) + (c+d)^2
Здесь получается 4 слагаемых с минусом.