1) Алексей внес вклад в банк под 10% годовых. Через 2 года на счете оказалось 155000 рублей. Какую сумму Алексей внес в банк? 2) Смешали 10 л 15-процентного раствора кислоты с 20 литрами 25-процентного раствора кислоты. Сколько процентов составляет концентрация получившегося раствора?
ответ: 1.{3a+7b=8
{a+5b=4/*(-3)⇒-3a-15b=-12
прибавим
-8b=-4
b=-4:(-8)
b=0,5
a+5*0,5=4
a=4-2,5
a=1,5
ответ (1,5;0,5)
{4x-2y+6x+3y=32⇒10x+y=32/*7⇒70x+7y=224
{10x-5y-4x-2y=4⇒6x-7y=4
прибавим
76x=228
x=228:76
x=3
10*3+y=32
y=32-30
y=2
ответ (3;2)
2.Пусть х км в час - собственная скорость катера, у км в час - скорость течения реки.
Тогда (х+у) км в час - скорость катера по течению,
(х-у) км в час - скорость катера против течения.
3·(х+у) км путь катера по течению за 3 часа.
5·(х-у) км путь катера против течения за 5 часов.
Всего по условию задачи 92 км.
Первое уравнение:
3·(х+у) + 5·(х-у) = 92;
5·(х+у) км путь катера по течению за 5 часов.
6·(х-у) км путь катера против течения за 6 часов.
По условию задачи 5·(х+у) больше 6·(х-у) на 10.
Второе уравнение:
5·(х+у) - 6·(х-у) = 10.
Получена система двух уравнений с двумя переменными.
{3·(х+у) + 5·(х-у) = 92 ⇒{3x+3y+5x-5y=92 ⇒ { 8x-2y=92 ⇒ {4x-y=46
{5·(х+у) - 6·(х-у) = 10 ⇒{5x+5y-6x+6y=10 ⇒ {-x+11y=10 ⇒ {x=11y-10
{4·(11y-10)-y=46
{x=11y-10
{44y-40-y=46
{x=11y-10
{43y=86
{x=11y-10
{y=2
{x=11·2-10=12
О т в е т. 12 км в час - собственная скорость катера, 2 км в час - скорость течения реки.
3.График линейной функции имеет вид: y=kx + m
Известно, что график проходит через точки А(2;-1) и В(-2;-3). Согласно условию задачи,составлю систему уравнений.
2k+m= -1
-2k+m= -3
2m = - 4
m= - 2
Подставим значение m= -2 в одно из уравнений, получим:
2k - 2 = -1
2k= 1
k= 1/2 = 0,5
График линейной функции имеет вид: y = 0,5k - 2
Объяснение:
P = m/n, где
m — число благоприятствующих исходов
n — число всевозможных исходов
n = 6·6 = 36. А вот благоприятствующие исходы m для каждого условия нужно считать
а) Событие A = {сумма выпавших очков равна 7}
Тогда: P = m/n = 6/36 = 1/6
б) Событие C = {сумма выпавших очков равна 8, а разность 4}
Тогда: P = m/n = 2/36 = 1/18
в) Событие D = {сумма выпавших очков равна 8, если известно, что их разность равна 4}
Событие A = {сумма выпавших очков равна 8}
Событие B = {разность выпавших очков равна 4}
По формуле условной вероятности: P(A|B) = P(A·B) / P(B), то есть:
P(A·B) = {сумма выпавших очков равна 8 И их разность равна
Тогда: P(D) = P(A·B) / P(B) = (1/18)·9 = 1/2
г) Событие E = {сумма выпавших очков равна 5, а произведение 4}
Тогда: P(E) = 2/36 = 1/18