Сделаем рисунок к задаче. Примем во внимание, что ∠ abd совсем не обязательно должен быть равен 90°, и на самом деле он не 90°, хотя и похож, потому при решении проигнорируем его.
Треугольник abm- равнобедренный.
В нем ∠ amb=∠ mad как углы при пересечении параллельных прямых секущей, а ∠ bam=∠ mad по построению.
Опустим из вершины b высоту bh.
ah=ab·sin(30)=25·1/2=12,5 bh=ab*sin(60)=(25√3):2 hd=(25+15)-12,5=27,5 bd= √(bh²+hd²)=√(25√3):2)²+(27,5 )²= √(1875/4+3025/4)=√4900/4=35 см ( можно и по теореме косинусов, результат должен быть одинаковым)
(3x+y)*5=1*5
15x+5y=5
Теперь можно сложить 2 уравнения системы.
15x+5y+2x-5y=-17
17x=-17
x=-1
Зная x, находим y.
-3+y=1
y=2
в) умножим 2е уравнение системы на 2.
2x+4y=2
Вычитаем 1е из 2го.
2x+4y-2x+3y=-7
7y=-7
y=-1
Зная у, находим х.
2x+3=9
2x=6
x=3
г) Умножим первое уравнение на 4.
20x+4y=96
Отнимем 2е из 1го.
20x+4y-7x-4y=76
13x=76
x=76/13
Зная х, находим у.
65/76+у=24
у=24-65/76=1759/76
Примем во внимание, что ∠ abd совсем не обязательно должен быть равен 90°, и на самом деле он не 90°, хотя и похож, потому при решении проигнорируем его.
Треугольник abm- равнобедренный.
В нем ∠ amb=∠ mad как углы при пересечении параллельных прямых секущей, а ∠ bam=∠ mad по построению.
Опустим из вершины b высоту bh.
ah=ab·sin(30)=25·1/2=12,5
bh=ab*sin(60)=(25√3):2 hd=(25+15)-12,5=27,5 bd= √(bh²+hd²)=√(25√3):2)²+(27,5 )²= √(1875/4+3025/4)=√4900/4=35 см ( можно и по теореме косинусов, результат должен быть одинаковым)
mn=bh=(25√3):2
Рассмотрим ᐃ amn
mn противолежит углу 30 градусов.
отсюда биссектриса am=2 mn=2·(25√3):2=25√3
Меньшая диагональ параллеограмма
bd= √ =35 см
Биссектриса
mn= 25√3 см
Вообще сам списал, не могу быть уверен что на 100% верно)