В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
katyunyagolubmailru
katyunyagolubmailru
03.07.2022 04:02 •  Алгебра

1. Арифметическая прогрессия (аn) задана последовательностью: -50; -38,8;… Найдите d, а3, а4, а21. 2. Найдите а23 и n-й члены арифметической прогрессии 11;7…
3. Известны два члена арифметической прогрессии (аn): а5 = 8,2 и а10 =4,7. Найдите а1 и d.

Показать ответ
Ответ:
puh9999
puh9999
11.09.2020 01:04

Объяснение:

Первая система линейных уравнений:

\left \{ \begin {array}{cccc} x1+2*x2-x3+3*x4-x5+2*x6=0 \\ 2*x1-x2+3*x3-4*x4+x5-x6=0 \\ 3*x1+x2-x3+2*x4+x5+3*x6=0 \\ 4*x1-7*x2+8*x3-15*x4+6*x5-5*x6=0 \end{array}\right

1-ое уравнение умножаем на -2 и складываем со 2-ым уравнением.

1-ое уравнение умножаем на -3 и складываем с 3-им уравнением.

1-ое уравнение умножаем на -4 и складываем с 4-ым уравнением.

Получаем нули при x1 во всех уравнениях, кроме 1-го:

\left \{ \begin {array}{cccc} x1+2*x2-x3+3*x4-x5+2*x6=0 \\ 0*x1-5*x2+5*x3-10*x4+3*x5-5*x6=0 \\ 0*x1-5*x2+2*x3-7*x4+4*x5-3*x6=0 \\ 0*x1-15*x2+12*x3-27*x4+10*x5-13*x6=0 \end{array}\right

2-ое уравнение умножаем на -1 и складываем с 3-им уравнением.

2-ое уравнение умножаем на -3 и складываем с 4-ым уравнением.

Получаем нули при x2 во всех уравнениях, кроме 1-го и 2-го:

\left \{ \begin {array}{cccc} x1+2*x2-x3+3*x4-x5+2*x6=0 \\ 0*x1-5*x2+5*x3-10*x4+3*x5-5*x6=0 \\ 0*x1+0*x2-3*x3+3*x4+x5+2*x6=0 \\ 0*x1+0*x2-3*x3+3*x4+x5+2*x6=0 \end{array}\right

3-ье и 4-ое уравнения получились одинаковыми, 4-ое отбрасываем:

\left \{ \begin {array}{ccc} x1+2*x2-x3+3*x4-x5+2*x6=0 \\ 0*x1-5*x2+5*x3-10*x4+3*x5-5*x6=0 \\ 0*x1+0*x2-3*x3+3*x4+x5+2*x6=0\end{array}\right

Получилась система, из которой можно получить фундаментальное решение:

x4, x5, x6 ∈ R

x3=\frac{3*x4+x5+2*x6}{3}=x4+\frac{x5}{3}+\frac{2*x6}{3}

x2=\frac{5*x3-10*x4+3*x5-5*x6}{5} =x3-2*x4+\frac{3*x5}{5} -x6=\\ =x4+\frac{x5+2*x6}{3} -2*x4+\frac{3*x5}{5} -\frac{3*x6}{3}=-x4+\frac{14*x5}{15}-\frac{x6}{3}

x2=-x4+\frac{14*x5}{15}-\frac{x6}{3}

x1=-2*x2+x3-3*x4+x5-2*x6=\\ =2*x4-\frac{28*x5}{15}+\frac{2*x6}{3} +x4+\frac{5*x5}{15}+\frac{2*x6}{3} -3*x4+\frac{15*x5}{15}-\frac{6*x6}{3} =\\ =0*x4 -\frac{8*x5}{15}-\frac{2*x6}{3}

x1=-\frac{8*x5}{15}-\frac{2*x6}{3}

Вторая система решается точно также.

\left \{ \begin{array}{cccc} x1-2*x2+x3-x4+x5=0 \\ 2*x1+x2-x3+2*x4-3*x5=0 \\ 3*x1-2*x2-x3+x4-2*x5=0 \\ 2*x1-5*x2+x3-2*x4+2*x5=0 \end{array}\right.

1-ое уравнение умножаем на -2 и складываем со 2-ым уравнением.

1-ое уравнение умножаем на -3 и складываем с 3-им уравнением.

1-ое уравнение умножаем на -2 и складываем с 4-ым уравнением.

Получаем нули при x1 во всех уравнениях, кроме 1-го:

\left \{ \begin{array}{cccc} x1-2*x2+x3-x4+x5=0 \\ 0*x1+5*x2-3*x3+4*x4-5*x5=0 \\ 0*x1+4*x2-4x3+4*x4-5*x5=0 \\ 0*x1-x2-x3+0*x4+0*x5=0 \end{array}\right.

4-ое уравнение ставим 2-ым, от этого система не меняется:

\left \{ \begin{array}{cccc} x1-2*x2+x3-x4+x5=0 \\ 0*x1-x2-x3+0*x4+0*x5=0 \\ 0*x1+5*x2-3*x3+4*x4-5*x5=0 \\ 0*x1+4*x2-4x3+4*x4-5*x5=0 \end{array}\right.

2-ое уравнение умножаем на 5 и складываем с 3-им уравнением.

2-ое уравнение умножаем на 4 и складываем с 4-ым уравнением.

Получаем нули при x2 во всех уравнениях, кроме 1-го и 2-го:

\left \{ \begin{array}{cccc} x1-2*x2+x3-x4+x5=0 \\ 0*x1-x2-x3+0*x4+0*x5=0 \\ 0*x1+0*x2-8*x3+4*x4-5*x5=0 \\ 0*x1+0*x2-8*x3+4*x4-5*x5=0 \end{array}\right.

3-ье и 4-ое уравнения получились одинаковыми, 4-ое отбрасываем:

\left \{ \begin{array}{ccc} x1-2*x2+x3-x4+x5=0 \\ 0*x1-x2-x3+0*x4+0*x5=0 \\ 0*x1+0*x2-8*x3+4*x4-5*x5=0 \end{array}\right.

Получилась система, из которой можно получить фундаментальное решение:

x4, x5 ∈ R

x3=\frac{4*x4-5*x5}{8}=\frac{x4}{2} -\frac{5*x5}{8}

x2=-x3=-\frac{x4}{2}+\frac{5*x5}{8}

x1=2*x2-x3+x4-x5=-\frac{2x4}{2}+\frac{10*x5}{8} -\frac{x4}{2}+\frac{5*x5}{8} +\frac{2*x4}{2}-\frac{8*x5}{8} =\\ =-\frac{x4}{2}+\frac{7*x5}{8}

x1=-\frac{x4}{2}+\frac{7*x5}{8}

0,0(0 оценок)
Ответ:
jeniakovaleva56
jeniakovaleva56
04.08.2022 07:19

Пусть точка А проходит окружность за время t с. Это время нам и нужно найти. Сразу можем записать, что точка В в таком случае проходит окружность за время (t+4) с.

Рассмотрим следующее условие, связанное с обгоном. Пусть точка В за 8 секунд проходит некоторую дистанцию. Тогда, точка А за то же время проходит эту дистанцию и еще целую окружность.

Для точки А условно запишем следующее:

окружность ⇆ t с

дистанция + окружность ⇆ 8 с

Поймем сколько времени тратится на прохождение дистанции (от второго соотношения отнимем первое):

дистанция ⇆ (8-t) с

Окончательно, для точки А имеем:

окружность ⇆ t с

дистанция ⇆ (8-t) с

Для точки В можем записать:

окружность ⇆ (t+4) с

дистанция ⇆ 8 с

Так как скорости точек А и В постоянны, то отношения времен, затраченных на прохождение соответственно равных расстояний совпадают. Составим уравнение:

\dfrac{t}{t+4} =\dfrac{8-t}{8}

8t=(t+4)(8-t)

8t=8t-t^2+32-4t

t^2+4t-32=0

D_1=2^2-1\cdot(-32)=36

t\neq -2-\sqrt{36} =-8

Отрицательный корень не подходит по смыслу задачи.

t= -2+\sqrt{36} =4

Значит, точка А проходит окружность за 4 с.

ответ: за 4 секунды

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота