1. Арифметическая прогрессия (аn) задана последовательностью: -50; -38,8;… Найдите d, а3, а4, а21. 2. Найдите а23 и n-й члены арифметической прогрессии 11;7… 3. Известны два члена арифметической прогрессии (аn): а5 = 8,2 и а10 =4,7. Найдите а1 и d.
В задании дана функция у = x² + 4 * x - 5, которая на декартово координатной плоскости Оху представляется как парабола. Как известно, если коэффициент при x² имеет положительное значение (как в нашем случае; он равен 1), то ветви параболы направлены вверх и она имеет вертикальную ось симметрии. Требуется написать уравнение оси симметрии данной параболы. Нетрудно убедиться, что искомое уравнение имеет вид: х = р, где р – абсцисса вершины параболы.
Для того, чтобы выполнить требование задания, приведём формулу (точнее, координаты) вершины, в общем случае, для параболы у = а * x² + b * x + c, которая может быть представлена как (-b / (2 * a); -(b² - 4 * a * c) / (4 * a)). Итак, для нашей параболы абсцисса вершины равна -b / (2 * a) = -4 / (2 * 1) = (-4) / 2 = -2. Следовательно, искомое уравнение имеет вид: х = -2.
отрезки и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки.
По условию четыре данные прямые параллельны, отсекают на прямой ЕН отрезки, равные длине отрезка ЕF, т.е. 6 см.
Значит, ЕН=3•6=18 см
CD=CB=AB=4, и AD=3•4=12 см
Проведем параллельно AD прямую ЕМ, пересекающую параллельные прямые СF и BG в точках Т и К соответственно.
СТ=ВК=АМ=DE=51 см.
ТF=CF-51=57-51=6 см,
Соответственные углы при пересечении параллельных прямых секущими равны (свойство), ⇒
∆ ТЕF, ∆ KEG и ∆ МЕН подобны;
TF - средняя линия ∆ КЕG ⇒ KG=2•TF=12 см
BG=51+12=63 см
КT=КМ=ТЕ=4
У подобных ∆ ТЕF и ∆ МEН k=EH:EF=18:6=3⇒
MH=6•3=18 см
Итак, АD=3•4=12 см,
EH=18 см
DE=51; CF=57 см
AH=51+18=69 см
Нужно металлических прутьев
12+18+57+63+69+51=30+120+120=270 cм =2,7 м
Мастер хорошо знает геометрию и применяет ее в своей работе.
Объяснение:
В задании дана функция у = x² + 4 * x - 5, которая на декартово координатной плоскости Оху представляется как парабола. Как известно, если коэффициент при x² имеет положительное значение (как в нашем случае; он равен 1), то ветви параболы направлены вверх и она имеет вертикальную ось симметрии. Требуется написать уравнение оси симметрии данной параболы. Нетрудно убедиться, что искомое уравнение имеет вид: х = р, где р – абсцисса вершины параболы.
Для того, чтобы выполнить требование задания, приведём формулу (точнее, координаты) вершины, в общем случае, для параболы у = а * x² + b * x + c, которая может быть представлена как (-b / (2 * a); -(b² - 4 * a * c) / (4 * a)). Итак, для нашей параболы абсцисса вершины равна -b / (2 * a) = -4 / (2 * 1) = (-4) / 2 = -2. Следовательно, искомое уравнение имеет вид: х = -2.
ответ: 0,5.ответ:
Объяснение: