Выражение, стоящее в правой части равенства может принимать как полжительные значения, так и отрицательные значения и ноль. Всё зависит от числового значения а. По определению модуля числа
По теореме Виета при . Поэтому . Знаки квадратного трёхчлена: + + + (2) - - - (3) + + +
В этом случае получаем два решения (при x>12 и при х<12) . А если , то решений уравнение не будет иметь,так как модуль не может принимать отрицательные значения. Это будет в случае . ответ: уравнение имеет одно решение при а=2 и а=3; уравнение имеет 2 решения при а∈(-∞,2)∪(3,+∞) ; уравнение не имеет решений при а∈(2,3) .
x0 = 4
Объяснение:
f(x) = ax^2 + bx + c
По графику мы видим, что f(1) = 6; f(2) = 1; f(3) = -2
Составляем систему:
{ a + b + c = 6
{ 4a + 2b + c = 1
{ 9a + 3b + c = -2
Осталось решить простую линейную систему.
Умножаем 1 уравнение на -4 и складываем его со 2 уравнением.
{ a + b + c = 6
{ 0a - 2b - 3c = -23
{ 9a + 3b + c = -2
Умножаем 1 уравнение на -9 и складываем его с 3 уравнением.
Умножаем 2 уравнение на -1
{ a + b + c = 6
{ 0a + 2b + 3c = 23
{ 0a - 6b - 8c = -56
Умножаем 2 равнение на 3 и складываем его с 3 уравнением.
{ a + b + c = 6
{ 0a + 2b + 3c = 23
{ 0a + 0b + c = 13
c = 13
Подставляем с во 2 уравнение
2b + 3*13 = 23
2b = 23 - 39 = -16
b = -8
Подставляем b и с в 1 уравнение
a - 8 + 13 = 6
a = 6 + 8 - 13 = 1
f(x) = 1x^2 - 8x + 13
Абсцисса вершины:
x0 = -b/(2a) = 8/(2*1) = 4
Ордината вершины:
f(4) = 4^2 - 8*4 + 13 = 16 - 32 + 13 = -3
Выражение, стоящее в правой части равенства может принимать как полжительные значения, так и отрицательные значения и ноль. Всё зависит от числового значения а. По определению модуля числа
По теореме Виета при .
Поэтому .
Знаки квадратного трёхчлена: + + + (2) - - - (3) + + +
В этом случае получаем два решения (при x>12 и при х<12) .
А если , то решений уравнение не будет иметь,так как модуль не может принимать отрицательные значения. Это будет в случае .
ответ: уравнение имеет одно решение при а=2 и а=3;
уравнение имеет 2 решения при а∈(-∞,2)∪(3,+∞) ;
уравнение не имеет решений при а∈(2,3) .