1) Биссектриса угла A параллелограмма ABCD пересекает сторону BC
в точке K. Найдите периметр параллелограмма,
2) Найдите sinB. В треугольнике ABC угол C равен 90°, если
3) Найдите OM. Точки M и N являются серединами сторон AB и BC треугольника ABC соответственно. Отрезки AN и CM пересекаются в точке O.
1) если BK=3, CK=9.
2) AC=6, AB=10.
3) AN=12, CM=15.
По построению треугольник АBH прямоугольный , следовательно угол Н= 90 градусов,угол А= 60 по условию, угол В= 30 по условию, что сумма углов треугольника равна 180 градусов. Так как ВА является гипотенузой и по условию равна 8 см, можно найти катеты треугольника : ВН=ВА*cos30 или ВН=ВА*sin60 ,а катет АН=AB*sin30 или AH=AB*cos60
ВН=8*cos30=8*0,86=6,88 см
АН=8*sin30=8*0,5=4 см
так как по условию АН=АD=4 cм, тогда АD=8 cм, а так как трапеция прямоугольная и ВН-высота, то DH=CB= 4 cм
площадь трапеции равна S= (a+b): 2 * h= (4+8):2*6.88=41,28 см2
Площадь трапеции равна 41,28 см2
2) 86-66=20 (руб.) - стоит альбом (4 альб. + 2 ласт. - 3 альб.-2 ласт.)
3) 20*2=40 (руб.) - стоят два альбома.
4) 43-40=3 (руб.) - стоит один ластик.
ОТВЕТ: стоимость альбома 20 рублей, стоимость ластика 3 рубля.
Пусть х рублей - цена альбома, а ластик стоит у рублей.
Тогда, 3х+2у=66 (первое уравнение)
2х+у=43 (второе уравнение).
Составим и решим систему уравнение (методом сложения):
(умножим второе уравнение на -2)
=(3х+(-4х)) + (2у+(-2у))=66+(-86)
-х=-20
х=20 (руб.) - стоимость альбома.
2х+у=43
2*20+у=43
у=43-40
у=3 (руб.) - стоимость ластика.
ОТВЕТ: стоимость альбома 20 рублей, стоимость ластика 3 рубля.