1) буратино, лиса алиса и кот базилио решили вскопать поле чудес. найти, за какое время они вскопают все поле чудес втроем, если известно, что буратино и алиса сделают вдвоем за 12 мин., буратино и базилио – за 15мин., а алиса и базилио – за 20мин.
2) молодая телеведущая решила приобрести для выступления 1 костюм, который состоит из блузки и юбки (в найти стоимость такого костюма, если известно, что на китайской оптовой базе стоимость 4 блузок и 2 юбки стоят 420грн., а стоимость 3 блузок и 5 юбок составляет 630грн.
как найти точки пересечения графика функции с осями координат?
с осью абсцисс график функции может иметь любое количество общих точек (или ни одной). с осью ординат — не более одной (так как по определению функции каждому значению аргумента ставится в соответствие единственное значение функции).
чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции).
чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).
примеры.
1) найти точки пересечения графика линейной функции y=kx+b с осями координат.
решение:
в точке пересечения графика функции с осью ox y=0:
kx+b=0, => x= -b/k. таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0).
в точке пересечения с осью oy x=0:
y=k∙0+b=b. отсюда, точка пересечения графика линейной функции с осью ординат — (0; b).
например, найдём точки пересечения с осями координат графика линейной функции y=2x-10.2x-10=0; x=5. с ox график пересекается в точке (5; 0).
y=2∙0-10=-10. с oy график пересекается в точке (0; -10).
2) найти точки пересечения графика квадратичной функции y=ax²+bx+c с осями координат.
решение:
в точке пересечения графика с осью абсцисс y=0. значит, чтобы найти точки пересечения графика квадратичной функции (параболы) с осью ox, надо решить квадратное уравнение ax²+bx+c=0.
в зависимости от дискриминанта, парабола пресекает ось абсцисс в одной точке или в двух точках либо не пересекает ox.
в точке пересечения графика с осью oy x=0.
y=a∙0²+b∙0+c=с. следовательно, (0; с) — точка, в которой парабола пересекает ось ординат.
например, найдём точки пересечения с осями координат графика функции y=x²-9x+20.
x²-9x+20=0
x1=4; x2=5. график пересекает ось абсцисс в точках (4; 0) и (5; 0).
y=0²-9∙0+20=20. отсюда, (0; 20) — точка пересечения параболы y=x²-9x+20 с осью ординат.
Пусть скорость велосипедиста равна х километров в час. Тогда скорость мотоциклиста равна (х + 15) километров в час. За 2,5 часа мотоциклист проехал:
2,5(х + 15) километров.
За 4 часа велосипедист проехал:
4х километров.
Составим уравнение:
2,5(х + 15) = 4х.
Решим уравнение и найдем неизвестное х:
2,5х + 37,5 = 4х.
1,5х = 37,5.
х = 37,5 : 1,5.
х = 25.
Скорость велосипедиста равна 25 километров в час. Тогда скорость мотоциклиста:
25 + 15 = 40 километров в час.
Расстояние равно:
2,5 * 40 = 100.
ответ: скорость мотоциклиста - 40 км/час, скорость велосипедиста - 25 км/час. Расстояние между городами - 100 километров.