В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
pycya2006
pycya2006
22.06.2021 10:03 •  Алгебра

(1+c)^2×(1+c)×d+d^2 раскрой скобки

Показать ответ
Ответ:
tatyanavartanyp06xy5
tatyanavartanyp06xy5
14.02.2023 05:03

x_{1} =\frac{-b+\sqrt{D}}{2*a}=\frac{5+9}{2*2}=\frac{14}{4}=\frac{7}{2}\\x_{2} =\frac{-b-\sqrt{D}}{2*a}=\frac{5-9}{2*2}=\frac{-4}{4}=-1

Объяснение:

Предыдущее мое решение было неверным, так как Вы неправильно указали формулировку уравнения.

Если уравнение имеет вид:

(2x-7)*(x+1) =0

Мы имеем право перемножить обе скобки между собой, получим:

(2*x-7)*(x+1)=2*x*x+2*x-7*x-7*1=2*x^2-5*x-7

Теперь мы получили обычное квадратное уравнение:

2*x^2-5*x-7=0

Находим дискриминант:

D=b^2-4*a*c=(-5)^2-4*2*(-7)=25+56=81=9^2

Тогда корни уравнения будут:

x_{1} =\frac{-b+\sqrt{D}}{2*a}=\frac{5+9}{2*2}=\frac{14}{4}=\frac{7}{2}\\x_{2} =\frac{-b-\sqrt{D}}{2*a}=\frac{5-9}{2*2}=\frac{-4}{4}=-1

Это и будут корни нашего уравнения.

Можно было решить гораздо проще и приравнять каждую из скобок в произведении уравнения к нулю, и решать как два отдельных уравнения. Тот быстрее, потому что мы без нахождения дискриминанта сразу получаем два корня:

(2x-7)=0; (x+1)=0\\2x-7=0; x+1=0\\2x=7; x=-1\\x_{1}=\frac{7}{2}; x_{2} =-1

0,0(0 оценок)
Ответ:
galinapetrovic
galinapetrovic
14.02.2023 05:03

\frac{x^{-10}}{x^4*x^{-5}}=\frac{1}{x^9}.

Объяснение:

Нам дан пример:

\frac{x^{-10}}{x^4*x^{-5}}

Число в отрицательной степени, это дробь, в которой в числителе будет 1, а в знаменателе наше число, но уже в положительной степени.

Поэтому, разберем сначала знаменатель:

{x^4*x^{-5}} =x^4*\frac{1}{x^5}=\frac{x^4}{x^5}=\frac{1}{x} - мы преобразовали второе значение переменной согласно правилу выше, и сократили числитель и знаменатель по степени.

Теперь, возвращаясь в исходный пример, получим:

\frac{x^{-10}}{\frac{1}{x}}

Преобразуем числитель по правилу выше:

\frac{x^{-10}}{\frac{1}{x}}=\frac{\frac{1}{x^{10}}}{\frac{1}{x}}

Теперь, по правилу деления одной дроби на другую, вторую дробь мы переворачиваем и умножаем их между собой:

\frac{\frac{1}{x^{10}}}{\frac{1}{x}}=\frac{1}{x^{10}}*\frac{x}{1}=\frac{x}{x^{10}}=\frac{1}{x^9} - это и будет итоговый ответ на наш пример.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота