1. Натуральные 100; 21; 10 (натуральные - это числа, которые возникают при счете предметов.)
Целые 100; 21; 0 ; 10; - 15; -24; (целые - это натуральные, им противоположные и нуль.)
Рациональные -3,2 ; 100; - 14,5; 21; 0; 10; - 15; 1,2333 ...=1.2(3) ; -2,121121112 т.к. можем представить в виде р/q, где р- целое, q- натуральное.
Иррациональные 5, 1313111...; 0,1010010001...; (т.к. иррациональные числа - это числа, которые в десятичной записи представляют собой бесконечные непериодические десятичные дроби).
2.а) каждое натуральное число является целым - да.
б) каждое число является натуральным. - нет.
в) каждое число является рациональным - нет.
г) каждое рациональное число является действительным - да.
д) каждое действительное число является рациональным - нет.
е) каждое иррациональное число является действительным - да.
ж) каждое действительное число является иррациональным - нет.
1. Натуральные 100; 21; 10 (натуральные - это числа, которые возникают при счете предметов.)
Целые 100; 21; 0 ; 10; - 15; -24; (целые - это натуральные, им противоположные и нуль.)
Рациональные -3,2 ; 100; - 14,5; 21; 0; 10; - 15; 1,2333 ...=1.2(3) ; -2,121121112 т.к. можем представить в виде р/q, где р- целое, q- натуральное.
Иррациональные 5, 1313111...; 0,1010010001...; (т.к. иррациональные числа - это числа, которые в десятичной записи представляют собой бесконечные непериодические десятичные дроби).
2.а) каждое натуральное число является целым - да.
б) каждое число является натуральным. - нет.
в) каждое число является рациональным - нет.
г) каждое рациональное число является действительным - да.
д) каждое действительное число является рациональным - нет.
е) каждое иррациональное число является действительным - да.
ж) каждое действительное число является иррациональным - нет.
Задание 3.
Сравните числа. а) 7,653>7,563
б) 1,(56) > 1,56
в) - 4,(45) < -4,45
г) 1,(34) <1,345
Задание 4:
Число 7,15 г) рациональное, т.к. 7,15=715/100
Число - 35. б) целое
P=2(a+b)P=2(a+b)
S=a*bS=a∗b
Подставим вместо S и Р известные значения, и объединим эти два уравнения в систему:
\left \{ {{28=2(a+b)} \atop {48=a*b }} \right.{
48=a∗b
28=2(a+b)
\left \{ {{14=a+b} \atop {48=a*b }} \right.{
48=a∗b
14=a+b
\left \{ {{a=14-b} \atop {48=a*b }} \right.{
48=a∗b
a=14−b
Первое уравнение будет являться подстановкой,заменим им а во втором уравнении:
48=b*(14-b)48=b∗(14−b)
48=14b-b^248=14b−b
2
b^2-14b+48=0b
2
−14b+48=0
По т. Виета
b_1=6, b_2=8b
1
=6,b
2
=8
Подставим в подстановку вместо b;
a_1=14-6=8a
1
=14−6=8
a_2=14-8=6a
2
=14−8=6
Длины сторон нашего прямоугольника 8см и 6см