нужно Учесть что к примеру 1 игрок играет с 5 и мы посчитали эту партию в играх первого игрока, но 5 так же играет с первым и ему мы тоже эту игру посчитали. Значит одну и туже партию посчитали ДВАЖДЫ. И таких повторяющихся партий у каждого игрока
Значит общее количество партий необходимо разделить на 2
а) квадратное уравнение имеет дискриминант D=b²-4ac. Если:
D>0, то уравнение имеет 2 корня (х1,2=(-b±√D)/(2a))D<0, то уравнение не имеет корнейD=0, то уравнение имеет 2 одинаковых корня (х=-b/(2a)) (необходимый нам случай)
Находим дискриминант:
D=(-6)*(-6)-4*3*c=0
36-12c=0
12c=36
c=36/12
c=3
б) х=(-(-6))/(2*3)
х=6/6
х=1
номер 4:
согласно теореме Виета уравнение вида х²+рх+q=0 имеет корни х1 и х2, которые обладают следующими свойствами:
х1+х2=-р,х1*х2=q
в данном случае уравнение: х²-16х+63=0, то есть p=-16, q=63, тогда:
16 человек приняло участие
Объяснение:
Рассуждаем так
пронумеруем игроков
1, 2, 3, 4, 5, 6, ..., n
тогда первый игрок будет играть с (n-1) человеком
второй так же и всего игроков n
Значит количество партий n(n-1) НО!
нужно Учесть что к примеру 1 игрок играет с 5 и мы посчитали эту партию в играх первого игрока, но 5 так же играет с первым и ему мы тоже эту игру посчитали. Значит одну и туже партию посчитали ДВАЖДЫ. И таких повторяющихся партий у каждого игрока
Значит общее количество партий необходимо разделить на 2
Итого количество n(n-1) /2
составим уравнение
n(n – 1) : 2 = 120
n²— n =240
n² - n – 240 = 0
D = 1+960 = 961 = 31²
n1.2 = (1 ± 31) : 2
п1 = 16; n2 = -15
отрицательным количество игроков быть не может
Значит ответ 16 человек приняло участие в турнире
Объяснение:
номер 3:
3х²-6х+с=0
а) квадратное уравнение имеет дискриминант D=b²-4ac. Если:
D>0, то уравнение имеет 2 корня (х1,2=(-b±√D)/(2a))D<0, то уравнение не имеет корнейD=0, то уравнение имеет 2 одинаковых корня (х=-b/(2a)) (необходимый нам случай)Находим дискриминант:
D=(-6)*(-6)-4*3*c=0
36-12c=0
12c=36
c=36/12
c=3
б) х=(-(-6))/(2*3)
х=6/6
х=1
номер 4:
согласно теореме Виета уравнение вида х²+рх+q=0 имеет корни х1 и х2, которые обладают следующими свойствами:
х1+х2=-р,х1*х2=qв данном случае уравнение: х²-16х+63=0, то есть p=-16, q=63, тогда:
а) х1+х2=-(-16)=16, х1*х2=63
б) 1/х1 + 1/х2 = (х2+х1)/(х1*х2)=16/63
номер 5:
х²-6х+8
а) х²-6х+8=
= х*х -2*х*3 + (3*3 - 3*3) + 8=
=(х-3)² - 9 + 8 = (х-3)² - 1
б) у(х) = х² - 6х + 8
у(х)=0, тогда
D=(-6)*(-6)-4*1*8=36-32=4=2²
x1=(-(-6)+2)/(2*1)=(6+2)/2=8/2=4
x2=(-(-6)-2)/(2*1)=(6-2)/2=4/2=2
следовательно,
х² - 6х + 8 = (х - 4) * (х - 2)