Допустим, цена изначально равнялась Р. С наступлением зимы цена увеличилась на х процентов, и стала равняться Р (1+х/100). Весной цена уменьшилась снова на х процентов, и стала равняться, соответственно, Р (1+х/100) (1-х/100). В тоже время, эта новая цена по условию на 4 % меньше изначальной, т. е равна Р (1-4/100)=Р (1-0.04). Приравниваем: Р (1+х/100)(1-х/100)=Р (1-0.04). Изначальная цена Р, как ей и положено, сокращается. Произведение суммы на разность равно разности квадратов. Получаем 1- (х/100)^2=1-0.04, т. е. (х/100)^2=0.04, т. е. х/100=0.2. Таким образом, цену повышали/ снижали на х=0.2*100=20%.
Объяснение:
А) Подставляем везде места х цифру 0
3×0/0^2-3×0 = 0
1) 3×0=0
2) 0^2=0
3) 3×0=0
ответ: 0
Подставляем цифру 13 места х
3×13/13^2-3×13= 39/169-39 = 39/130 = 0.3 или 3/10
1) 3×13=39
2) 3^2=169
3) 169-39=130
4) 39:130=0.3 , а если в дробях то 39/130 сокращаем на 13=3/10
ответ: 0.3 или можно также записать 3/10
Б) Подставляем вместо х цифру 3
12(3-3)/24=12/24=2
1) Всегда сначала решаем то что в скобках (3-3) =0
2) Остаётся 12/24 здесь сократим на 12 будет =2
ответ: 2
Подставляем 5 вместо х
12(5-3)/24= 12×2/24=24/24=1
1) Сначала то что в скобках (5-3)=2
2) 12×2=24
3) 24/24=1
ответ:1
наступлением зимы цена увеличилась на х
процентов, и стала равняться Р (1+х/100).
Весной цена уменьшилась снова на х процентов,
и стала равняться, соответственно, Р (1+х/100)
(1-х/100). В тоже время, эта новая цена по
условию на 4 % меньше изначальной, т. е равна
Р (1-4/100)=Р (1-0.04). Приравниваем: Р
(1+х/100)(1-х/100)=Р (1-0.04). Изначальная цена
Р, как ей и положено, сокращается.
Произведение суммы на разность равно
разности квадратов. Получаем 1-
(х/100)^2=1-0.04, т. е. (х/100)^2=0.04, т. е.
х/100=0.2. Таким образом, цену повышали/
снижали на х=0.2*100=20%.