1. Решим первое неравенство системы. Раскроем скобки:
7(3x + 2) - 3(7x + 2) > 2x;
21х + 14 - 21х - 6 > 2x;
8 > 2x;
2х < 8;
х < 8/2;
х < 4.
2. Решим второе неравенство системы. Чтобы произведение было меньше 0, нужно чтобы один из множителей был меньше нуля:
х - 5 < 0 ⇒ х < 5;
х + 8 < 0 ⇒ х < -8.
3. Оба решения двух неравенств системы, данной по условию, пересекаются на множестве чисел от -8 до 4, тогда ответ будет (-8; 4). Так как неравенства, данные по условию, строгие, что числа -8 и 4 не входят в множество решений.
V=(40-X)(64-X)X - функция. найти максимум, х∈(0, 40). найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х она равна 3х²-208х+2560 найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние 3х²-208х+2560=0 1) х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3= =(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3= =(104+8·7)/3=160/3
2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16 ОСТАЛОСЬ по достаточному условию экстремума убедиться, что х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)
ответ: (-8; 4).
Объяснение:
Система неравенств:
7(3x + 2) - 3(7x + 2) > 2x;
(x - 5)*(x + 8) < 0.
1. Решим первое неравенство системы. Раскроем скобки:
7(3x + 2) - 3(7x + 2) > 2x;
21х + 14 - 21х - 6 > 2x;
8 > 2x;
2х < 8;
х < 8/2;
х < 4.
2. Решим второе неравенство системы. Чтобы произведение было меньше 0, нужно чтобы один из множителей был меньше нуля:
х - 5 < 0 ⇒ х < 5;
х + 8 < 0 ⇒ х < -8.
3. Оба решения двух неравенств системы, данной по условию, пересекаются на множестве чисел от -8 до 4, тогда ответ будет (-8; 4). Так как неравенства, данные по условию, строгие, что числа -8 и 4 не входят в множество решений.
найти максимум, х∈(0, 40).
найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х
она равна 3х²-208х+2560
найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние 3х²-208х+2560=0
1) х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3=
=(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3=
=(104+8·7)/3=160/3
2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16
ОСТАЛОСЬ по достаточному условию экстремума убедиться, что х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)
вот как-то так...-))