1.Даны линейная функция y = -2,5x + 7. Задайте формулой линейную функцию, график которой:
а) параллелен графику данной функции;
б) пересекает график данной функции;
в) параллелен графику данной функции и проходит через начало координат
ребята это суммативная работа за раздел
ответ: это 1 задача
Обозначим скорость катера -- х км\ч, скорость течения реки---у км\ч. По течению реки скорость катера будет ( х+у) , против течения ---(х-у) , а в стоячей воде-х. Составим систему согласно условия:
{4(x+y)+3x=148 {5(x-y)-2x=50
{7x+4y=148 {3x-5y=50
Решим систему сложения. Первое уравнение системы умножим на 5, а второе -- на 4 .
35x+20y=740 + {12x-20y=200
47x=940
x=20 скорость катера
Подставим значение х в любое уравнение системы и найдём у:( например , в первое)
7·20+4у=148
140+4у=148
4у=148-140
4у=8
у=2 скорость течения реки
ответ: 20 км\ч ; 2 км\ч
Вторая задача.
Пусть (х) будет скорость о течению реки
а (у) скорость против течения реки
2x+5y=120 /*3 6x+15y=360
3x-7y=-52 /*2 6x-14y=-104 29y=464 y=464:29 y=16км/ч скорость против течения
2x+5*16=120
2x+80=120
2x=120-80
2x=40
x=20км/ч скорость по тичению
1) 12⁻³=1/12³=1/1728
2) 3⁻⁴=1/3⁴=1/81
3) (-2)⁻⁶=1/(-2)⁶=1/64
4) (-5)⁻³=-1/5³=-1/125
5) 100⁻¹=1/100=0,01
6) (-1/8)⁻¹=-8
7) (2/3)⁻³=(3/2)³=27/8=3 3/8
8) (-7/9)⁻²=(9/7)²=81/49=1 32/49
9) (1 2/3)⁻¹=(5/3)⁻¹=3/5=0,6
10) (-1 1/4)⁻³=(-5/4)⁻³=(-4/5)³=-64/125
11) (0,01)⁻³=(1/100)⁻³=100³=1 000 000
12) (1,6)⁻²=(1 3/5)⁻²=(8/5)⁻²=(5/8)²=25/64
1) 3⁻³ + 6⁻² = 1/27 + 1/36 = 4/108 + 3/108 = 7/108
2) (2/3)⁻¹ + (-1,7)⁰ - 2⁻³ = 3/2 + 1 - 1/8 = 12/8 + 1 - 1/8 = 11/8 + 8/8 = 19/8 = 2 3/8
3) (3/4)⁻² * 2⁻³ = 16/9 * 1/8 = 16/(9*8) = 2/9
4) 10⁻¹ + 5⁻² - 2⁻³ = 1/10 + 1/25 - 1/8 = 20/200 + 8/200 - 25/200 = 3/200 = 15/1000 = 0,015