1. Даны точки A(10;4) и B(4;18). Найди координаты точек C и D, если известно, что точка B — середина отрезка AC, а точка D — середина отрезка BC. C= D=
Строишь графики функций y = x² и y = x + 5, но в системе координат с дополнительной осью O, параллельной оси Оy, но сдвинутой на 4 вправо, т.е. провести ее надо через точку 4 по оси Ох. Построил? Теперь смотришь на знаки. Если на каком-то отрезке оси Ох знаки функции одинаковы, т.е. их графики одновременно или выше, или ниже оси Ох, то нужное нам произведение больше нуля, если находятся по разные стороны от оси Ох, то оно меньше нуля.
Т.е. в нашем случае ответ будет x ∈ (-бесконечности; -1], или x ≤ -1
Строишь графики функций y = x² и y = x + 5, но в системе координат с дополнительной осью O, параллельной оси Оy, но сдвинутой на 4 вправо, т.е. провести ее надо через точку 4 по оси Ох.
Построил? Теперь смотришь на знаки. Если на каком-то отрезке оси Ох знаки функции одинаковы, т.е. их графики одновременно или выше, или ниже оси Ох, то нужное нам произведение больше нуля, если находятся по разные стороны от оси Ох, то оно меньше нуля.
Т.е. в нашем случае ответ будет x ∈ (-бесконечности; -1], или x ≤ -1
В решении.
Объяснение:
График функции, заданной уравнением у=(a + 1)x + а - 1 пересекает ось абсцисс в точке с координатами (-5; 0);
а) Найдите значение а;
Подставить известные значения х и у (координаты точки) в уравнение, вычислить а:
у = (а + 1)х + а - 1
0 = (а + 1)*(-5) + а - 1
0 = -5а - 5 + а - 1
0 = -4а - 6
4а = -6
а = -6/4 (деление)
а = -1,5;
б) запишите функцию в виде у=kx+b;
Коэффициент k = (а + 1) = -1,5 + 1 = -0,5;
k = -0,5;
b = (а - 1) = -1,5 - 1
b = -2,5;
Уравнение функции:
у = -0,5х - 2,5.
c) Не выполняя построения графика функции, определите, через какую четверть график не проходит.
Так как k < 0 и b < 0, график не проходит через 1 четверть.