1) Для функции f(x) = 1 / , найдите первоначальную, график которой проходит через точку A(0; ) 2) Найдите значение С первоначальной для функции f(x) = x3 + на промежутке (0; + ∞) в точке М(1;1)
4x^3-24x^2-4x+120=4(x+2)(x-3)(x+a) 4(x^3-6x^2-x+30)=4(x+2)(x-3)(x+a) (x^3-6x^2-x+30)=(x+2)(x-3)(x+a) раскроем первые две скобки справа от знака равенства (x+2)(x-3)=x^2-3x+2x-6=x^2-x-6 (x^3-6x^2-x+30)=(x^2-x-6)(x+a) так как имеем равенство, то левая часть равенства имеют такие же два множителя-скобки выделим слева такое же выражение, как и в первой скобке справа (x^3-x^2-5x^2-6x+5x+30)=(x^2-x-6)(x+a) здесь в левой части равенства -6x^2 расписали как -x^2-5x^2, а слагаемое -x как -6x+5x ((x^3-x^2-6x)-5x^2+5x+30)=(x^2-x-6)(x+a) (x(x^2-x-6)-5(x^2-x-6))=(x^2-x-6)(x+a) в левой части равенства как общий множитель выносим за скобку (x^2-x-6)(x-5)=(x^2-x-6)(x+a) выражения в первых скобках слева и справа равны, следовательно равны и выражения во второй скобке слева и справа x-5=x+a a=-5
4(x^3-6x^2-x+30)=4(x+2)(x-3)(x+a)
(x^3-6x^2-x+30)=(x+2)(x-3)(x+a)
раскроем первые две скобки справа от знака равенства
(x+2)(x-3)=x^2-3x+2x-6=x^2-x-6
(x^3-6x^2-x+30)=(x^2-x-6)(x+a)
так как имеем равенство, то левая часть равенства имеют такие же два множителя-скобки
выделим слева такое же выражение, как и в первой скобке справа
(x^3-x^2-5x^2-6x+5x+30)=(x^2-x-6)(x+a)
здесь в левой части равенства -6x^2 расписали как -x^2-5x^2, а слагаемое -x как -6x+5x
((x^3-x^2-6x)-5x^2+5x+30)=(x^2-x-6)(x+a)
(x(x^2-x-6)-5(x^2-x-6))=(x^2-x-6)(x+a)
в левой части равенства как общий множитель выносим за скобку
(x^2-x-6)(x-5)=(x^2-x-6)(x+a)
выражения в первых скобках слева и справа равны, следовательно равны и выражения во второй скобке слева и справа
x-5=x+a
a=-5