1. Для каждого из следующих событий выпишите все
возможные исходы, укажите их число, найдите число
благоприятных исходов и вычислите вероятность.
Монету бросают три раза. Какова вероятность того, что:
а) орел выпадет ровно один раз;
б) орел выпадет ровно два раза;
в) орел выпадет не меньше двух раз?
2. Кубик бросают два раза. Какова вероятность того, что:
а) будет набрано больше 11 очков;
б) будет набрано больше 10 очков;
в) будет набрано меньше 4 очков?
1) a) 4+12x+9x2
4+12x+18
22+12x
2(11+6x)
б) 25-40х+16х2
25-40х+32
57-40х
г) -56а+49а*2+16
-56а+98а+16
42а+16
2(21а+8)
2) a) (y-1)(y+1) б) p^2-9 г) (3x-2)(3x+2) д) (3x)^2-2^2 е) a^2-3^2
y^2-1 (3x)^2-2^2 9x^2-4 a^2-9
в) 4^2-(5y^2) 9x^2-4
16-25y^2
4) a) a3-b3 б) 27a3+8b3
3(a-b) 81a+24b
3(27a+8b)
2. 5*4*3 = 60 чисел;
3.
4. 0,04 + 0,1 + 0,2 = 0,34
5. 50/2500 = 0,02 = 2%;
8. Возможных исходов - 6, благоприятных исходов -2. Тогда вероятность равна 2/6 = 1/3;
9.
10. 4*4*3 = 48 чисел;
11.
12. 5/37 = 0,1;
13. В классе 12 + 16 - 25 = 3 ученикв и умные, и красивые. Значит ответ 3/25 = 0,12;
14. 9!/(9-6)! = 9!/3! = 60480;
15.
17. 1/10 = 0,1;
18.
21. х!/((х-1)! * (х - (х-1))!) * (х-1) = х!/(х-1)! * (х-1) = х(х-1) = 30 => х = 6 и х = -5. х = -5 не подходит, так как биноминальные коэффициенты C(n,m) определены при натуральных m,n. Значит х = 6.
22. 17!/(2!*(17-2)!) = 17!/(2!*15!) = 136;
23. Упорядояим ряд: 2,3,3,3,4,4,4,4,5,5.
Медиана равна 4, среднее арифметическое - 3,7.
Модуль разности равен |4 - 3,7| = 0,3;