– значок дифференциала. При записи интеграла и в ходе решения важно не терять данный значок. Заметный недочет будет.
– подынтегральное выражение или «начинка» интеграла.
– первообразная функция.
– множество первообразных функций. Не нужно сильно загружаться терминами, самое важное, что в любом неопределенном интеграле к ответу приплюсовывается константа .
Решить интеграл – это значит найти определенную функцию , пользуясь некоторыми правилами, приемами и таблицей.
Еще раз посмотрим на запись:
Посмотрим в таблицу интегралов.
Что происходит? Левые части у нас превращаются в другие функции: .
У наше определение.
Решить неопределенный интеграл – это значит ПРЕВРАТИТЬ его в определенную функцию , пользуясь некоторыми правилами, приемами и таблицей.
Возьмем, например, табличный интеграл . Что произошло? превратился в функцию .
Как и в случае с производными, для того, чтобы научиться находить интегралы, не обязательно быть в курсе, что такое интеграл, первообразная функция с теоретической точки зрения. Достаточно осуществлять превращения по некоторым формальным правилам. Так, в случае совсем не обязательно понимать, почему интеграл превращается именно в . Пока можно принять эту и другие формулы как данность. Все пользуются электричеством, но мало кто задумывается, как там по проводам бегают электроны.
Так как дифференцирование и интегрирование – противоположные операции, то для любой первообразной, которая найдена правильно, справедливо следующее:
Відповідь:
Сразу разбираемся в обозначениях и терминах:
– значок интеграла.
– подынтегральная функция (пишется с буквой «ы»).
– значок дифференциала. При записи интеграла и в ходе решения важно не терять данный значок. Заметный недочет будет.
– подынтегральное выражение или «начинка» интеграла.
– первообразная функция.
– множество первообразных функций. Не нужно сильно загружаться терминами, самое важное, что в любом неопределенном интеграле к ответу приплюсовывается константа .
Решить интеграл – это значит найти определенную функцию , пользуясь некоторыми правилами, приемами и таблицей.
Еще раз посмотрим на запись:
Посмотрим в таблицу интегралов.
Что происходит? Левые части у нас превращаются в другие функции: .
У наше определение.
Решить неопределенный интеграл – это значит ПРЕВРАТИТЬ его в определенную функцию , пользуясь некоторыми правилами, приемами и таблицей.
Возьмем, например, табличный интеграл . Что произошло? превратился в функцию .
Как и в случае с производными, для того, чтобы научиться находить интегралы, не обязательно быть в курсе, что такое интеграл, первообразная функция с теоретической точки зрения. Достаточно осуществлять превращения по некоторым формальным правилам. Так, в случае совсем не обязательно понимать, почему интеграл превращается именно в . Пока можно принять эту и другие формулы как данность. Все пользуются электричеством, но мало кто задумывается, как там по проводам бегают электроны.
Так как дифференцирование и интегрирование – противоположные операции, то для любой первообразной, которая найдена правильно, справедливо следующее:
Пояснення:
1. 2x2+3x+19 = 0
D= b2 - 4ac
D=9 - 4*2·19 = -143
2. 26х2+5х+10=0
D= b2 - 4ac
D= 25 - 4*26*10 = -1015
D<0 корней нет
3. x2+8x+15=0
D= b2 -4ac
D= 64 - 4*15= 4
x1= -b+√D / 2a = -8 +2 / 2*1 = -6/2 = -3
x2= -b - √D / 2a = -8 - 2 / 2*1 = -10/2 = -5
4. 4x2−14x+6=0
D= b2 - 4ac
D= 196 - 4*4*6 = 100
x1= -b+√D / 2a = 14 + 10 / 2*4 = 24/8 = 3
x2= -b - √D / 2a = 14 -10/ 2*4 = 4/8 = 1/2
5. 6x2+6x+15=0
D= b2 - 4ac
D= 36 - 4*6*15 = -324
6. 2x2+19x+1=0
D= b2 - 4ac
D= 361 - 4*2*1 = 353
D>0 2 корня
7. x2+8x+16=0
D= b2 - 4ac
D= 64 - 4*16 = 0
x= -b+ √D / 2a = -8+0 / 2*1 = -8/2 = -4
8. 2x2−7x+6=0
D= b2 - 4ac
D= 49 - 4*2*6 = 1
x1= -b+√D / 2a = 7 +1/ 2*2 = 8/4 = 2
x2= -b - √D / 2a = 7 -1/ 2*2 = 6/4 = 3/2 = 1 1/2