В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
юля6712
юля6712
26.12.2020 22:37 •  Алгебра

1. докажите, что значение выражения √5+6 - (√5+√6) - число иррациональное.

Показать ответ
Ответ:
lei123
lei123
01.10.2020 14:10
Раскроем скобки и приведём подобные.

\sqrt{5} +6 - ( \sqrt{5} + \sqrt{6} ) = \sqrt{5} +6 - \sqrt{5} - \sqrt{6} = 6 - \sqrt{6}
 Число 6 - рациональное. А вот число \sqrt{6} - иррациональное. Разность рационального и рационального - есть число иррациональное.

Докажем, что число \sqrt{6} иррациональное.

Предположим, что \sqrt{6} = \frac{a}{b}, где a и b - целые числа, причём они не являются одновременно чётными.

Возведём обе части в квадрат:
(\sqrt{6})^2 = (\frac{a}{b})^2 \\ \\ 6 = \frac{a^2}{b^2} \\ \\ a^2 = 6b^2

Число 6b^2 чётное, следовательно, чётно а², и,значит, чётно а.
Пусть тогда а = 2с. Тогда мы имеем:
a^2 = 6b^2 \\ \\ (2c)^2 = 6b^2 \\ \\ 4c^2 = 6b^2 \\ \\ 2c^2 = 3b^2

Т.к. 2с² чётно, то чётно 3b², откуда следует чётность b² и чётность b.

Мы получили, что a и b - чётные, что противоречит начальному предположению. Следовательно, число \sqrt{6} иррациональное, а вместе с ним иррационально и исходное выражение.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота