В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
chelsi09
chelsi09
25.03.2020 10:51 •  Алгебра

1. докажите неравенство (а+b)*(1/a+1/b)≥4, (a> 0. d> 0) нужно .

Показать ответ
Ответ:
1лолкекчебурек1
1лолкекчебурек1
12.07.2020 21:01
 
Так как \frac{a}{b}+\frac{b}{a} \geq 2 
следует из неравенство о средних , воспользуемся  этим неравенством           
 Доказательно этого неравенство 
 \frac{a}{b} + \frac{b}{a} = \frac{a^2+b^2}{ab}\\
 a^2+b^2 \geq 2ab\\
\frac{2ab}{ab}=2
  
Теперь докажем 
 (a+b)(\frac{1}{a}+\frac{1}{b}) \geq 4\\
2+\frac{a}{b}+\frac{b}{a} \geq 4\\
2+2 \geq 4 
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота