1) Доведіть, що: а) число 0,3 є арифметичним квадратним коренем із 0,09;
б) число - 7 не є арифметичним квадратним коренем із 49;
г) число 0,6 не є арифметичним квадратним коренем із 3,6.
2) Доведіть, що: а) 121 √11; б) 169 √ 13; в) 1,44 √ 1,2 ; г) 0,49 √ 0,7 .
Обозначим знаменатель дроби за (а), тогда числитель дроби равен (а-3) и сама дробь представляет:
(а-3)/а
Если к числителю прибавим 3, то числитель станет равным:
(а-3+3)=а,
а к знаменателю прибавим два знаменатель примет значение:
(а+2)
сама дробь представит в виде:
а/(а+2)
А так как получившаяся дробь увеличится на 7/40 , составим уравнение:
а/(а+2) - (а-3)/а=7/40
Приведём уравнение к общему знаменателю (а+2)*а*40
а*40*а - 40*(а+2)*(а-3)=7*(а+2)*а
40а²- 40*(а²+2а-3а-6)=7*(а²+2а)
40а²-40а²+40а+240=7а²+14а
7а²+14а-40а-240=0
7а²-26а-240=0
а1,2=(26+-D)/2*7
D=√(26²-4*7*-240)=√(676+6720)=√7396=86
а1,2=(26+-86)/14
а1=(26+86)/14=112/14=8
а2=(26-86)/14=-60/14=-4 1/15 - не соответствует условию задачи
Подставим значение а=8 в дробь (а-3)/а
(8-3)/8=5/8
ответ: 5/8
в прямоугольном треугольнике СВН угол В = 45 градусов (по условию), тогда угол ВСН = 90 - 45 = 45 градусов => треугольник равнобедренный, ВН = СН.
известно, что ВС = 6, пусть АН = ВН = х,
тогда по теореме Пифагора ВС^2 = ВН^2 + СН^2
36 = х^2 + x^2; 36 = 2x^2; x^2 = 18; х = корень из 18;
треугольник АНС - прямоугольный.
угол А = 60 градусов (по условию), тогда угол НСА = 90 - 60 = 30 градусов.
пусть АС = 2х, тогда АН = х (так как катет, лежащий против угла, равного 30 градусов, равен 1/2 гипотенузы).
по теореме Пифагора АС^2 = АН^2 + НС^2
4х^2 = 18 + х^2; 4х^2 - х^2 = 18; 3х^2 = 18; х^2 = 6; х = корень из 6;
тогда Ас = 2х = 2 корня из 6
ответ: 2 корня из 6