Соотношения между основными тригонометрическими функциями – синусом, косинусом, тангенсом и котангенсом - задаются тригонометрическими формулами. А так как связей между тригонометрическими функциями достаточно много, то этим объясняется и обилие тригонометрических формул. Одни формулы связывают тригонометрические функции одинакового угла, другие – функции кратного угла, третьи – позволяют понизить степень, четвертые – выразить все функции через тангенс половинного угла, и т.д.
В этой статье мы по порядку перечислим все основные тригонометрические формулы, которых достаточно для решения подавляющего большинства задач тригонометрии. Для удобства запоминания и использования будем группировать их по назначению, и заносить в таблицы.
Пусть х км/ч - начальная скорость автобуса, тогда 120/х - это время, в течение которого автобус преодолел первую половину пути.
Если бы автобус двигался по расписанию, то и вторую часть пути он преодолел бы за то же самое время 120/х. Но так как автобус сделал 20-минутную остановку, то он должен был увеличить скорость до (х + 4) км/ч, чтобы компенсировать оставание от расписание, которое составило:
Соотношения между основными тригонометрическими функциями – синусом, косинусом, тангенсом и котангенсом - задаются тригонометрическими формулами. А так как связей между тригонометрическими функциями достаточно много, то этим объясняется и обилие тригонометрических формул. Одни формулы связывают тригонометрические функции одинакового угла, другие – функции кратного угла, третьи – позволяют понизить степень, четвертые – выразить все функции через тангенс половинного угла, и т.д.
В этой статье мы по порядку перечислим все основные тригонометрические формулы, которых достаточно для решения подавляющего большинства задач тригонометрии. Для удобства запоминания и использования будем группировать их по назначению, и заносить в таблицы.
36 км/ч
Объяснение:
Пусть х км/ч - начальная скорость автобуса, тогда 120/х - это время, в течение которого автобус преодолел первую половину пути.
Если бы автобус двигался по расписанию, то и вторую часть пути он преодолел бы за то же самое время 120/х. Но так как автобус сделал 20-минутную остановку, то он должен был увеличить скорость до (х + 4) км/ч, чтобы компенсировать оставание от расписание, которое составило:
20 : 60 = 1/3 часа.
Составляем уравнением и находим х:
120/х = 120/(х+4) + 1/3
360/х = 360/(х+4) + 1
360(х+4) = 360х + х²+4х
х²+4х-1440=0
Корни приведённого квадратного уравнения:
х₁,₂ = - 2± √(2²+1440)
х₁,₂ = - 2± √1444 = - 2 ± 38.
Отрицательный корень отбрасываем.
х = -2+38 = 36 км/ч
ответ: 36 км/ч