1. Функция определена на R. Используя график производной , установите:
а) промежутки убывания функции [1] b) точки минимума функции. [2] с) Найдите вторую производную функции и определите точки перегиба графика функции [3]
Верное условие Дима шел три часа при этом скорость его была больше 4км в час, но меньше 6км в час. Сколько км всего мог пройти Дима за это время?
Шёл время t=3ч Скорость V >4 км/ч; V< 6км/ч 4Путь S=? S=V•t Наименьшее S>4•3 Наибольшее S<6•3 Записываем так 12 ответ: Дима мог пройти путь больше 12км и меньше 18км.
Действиями 1)) 3•4=12км путь но его скорость больше 4км/ч, значит 12км<чем 2)) 3•6=18км, путь, но скорость меньше чем 6км/ч, значит 18км> чем от 12<путь<18 ответ: мог пройти больше 12 км и меньше 18 км.
Корни уравнения это х,а т.к сумма квадратов корней=8=>2²+(-2)²=8,значит корень уравнения,т.е х=2 или -2,но знак неважен,т.к подставляя корень в ур-е знак на результат не повлияет,теперь находим Р,для этого вместо х подставляем его значение,т.е 2 или -2,я поставлю 2, но можешь подставить и -2,ответ будет тот же: 2²+2р-2=0; 4+2р-2=0; 2р=-2; р=-1, теперь проверяем правильно ли нашли корни: х²+(-1)×х-2=0; х²-х-2=0; D=1-4×1×(-2)=9; х1=(1+3)/2=2; х2=(1-3)/2=-2,значит все верно.Удачи, надеюсь объяснила подробно.
Дима шел три часа при этом скорость его была больше 4км в час, но меньше 6км в час. Сколько км всего мог пройти Дима за это время?
Шёл время t=3ч
Скорость V >4 км/ч; V< 6км/ч
4Путь S=?
S=V•t
Наименьшее S>4•3
Наибольшее S<6•3
Записываем так
12
ответ: Дима мог пройти путь больше 12км и меньше 18км.
Действиями
1)) 3•4=12км путь но его скорость больше 4км/ч, значит 12км<чем
2)) 3•6=18км, путь, но скорость меньше чем 6км/ч, значит 18км> чем
от 12<путь<18
ответ: мог пройти больше 12 км и меньше 18 км.