Так как слагаемое 9 постоянно, a - (n-3)^2 неположительно для любого n, то наибольшей сумма будет тогда, когда наибольшим будет первое слагаемое, т.е. когда - (n-3)^2 = 0, при n = 3.
в данном методе нужно сложить левые части обоих уравнений и приравнять к сумме правых частей:
(5х - 4у) + (7х + 4у) = 22 + 2, 5х - 4у + 7х + 4у = 24 - как видим -4у и +4у сокращаются, так как их сумма равна 0 и получаем упрощенное уравнение, 5х + 7х = 24, 12х = 24, х = 2, теперь из любого из уравнений выделяем у: если из 1 ур-ия: у = (5х - 22) : 4 = (5*2 - 22) : 4 = -3, или если из 2 ур-ия: у = (2 - 7х) : 4 = (2 - 7*2) : 4 = -3 (как видим результат у одинаков).
1. -2;
2. 3.
Объяснение:
1.Sn=6n-n^2
a1 = S1 = 6•1 - 1^2 = 5;
a1+a2 = S2 = 6•2 - 2^2 = 12 - 4 = 8;
a2 = S2 - S1 = 8 - 5 = 3.
Найдём d:
d = a2 - a3 = 3 - 5 = -2.
2. Sn=6n-n^2
Рассмотрим квадратичную функцию
у = 6х - х^2.
Графиком функции является парабола
у = - х^2 + 6х
Ветви параболы направлены вниз, своего наибольшего значения функция достигает в вершине параболы. Найдём её координаты:
х вершины = -b/(2a) = -6/(-2) = 3.
y вершины = - 3^2 +6•3 = -9+18 = 9.
Наибольшего значения 9 функция у = - х^2 + 6х достигает при х = 3.
Так как 3 - натуральное число, то и наша функция Sn=6n-n^2, определённая только для натуральных n, достигает наибольшего значения 9 при n = 3.
Необходимо взять три первых члена прогрессии, чтобы их сумма была наибольшей и равной 9.
ответить на второй вопрос можно и по-прежнему другому:
Sn=6n-n^2
- n^2 + 6n = - (n^2 - 6n) = - (n^2 -2•n•3 + 9 - 9) = - ((n-3)^2 -9) = - (n-3)^2 + 9.
Так как слагаемое 9 постоянно, a - (n-3)^2 неположительно для любого n, то наибольшей сумма будет тогда, когда наибольшим будет первое слагаемое, т.е. когда - (n-3)^2 = 0, при n = 3.
В этом случае Sn = - (n-3)^2 + 9 = 0 + 9 = 9.
║ 7x+4y=2,
метод сложения:
в данном методе нужно сложить левые части обоих уравнений и приравнять к сумме правых частей:
(5х - 4у) + (7х + 4у) = 22 + 2,
5х - 4у + 7х + 4у = 24 - как видим -4у и +4у сокращаются, так как их сумма равна 0 и получаем упрощенное уравнение,
5х + 7х = 24,
12х = 24,
х = 2,
теперь из любого из уравнений выделяем у:
если из 1 ур-ия: у = (5х - 22) : 4 = (5*2 - 22) : 4 = -3, или
если из 2 ур-ия: у = (2 - 7х) : 4 = (2 - 7*2) : 4 = -3 (как видим результат у одинаков).
ответ: (2; -3)