В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
olyaokeio
olyaokeio
18.01.2021 01:38 •  Алгебра

1.функция задана формулой y=6x-5 Определите: 1) значение функции, если значение аргумента равно -2;
2) значение аргумента, при котором значение функции равно 13;
3) проходит ли график функции через точку А (-1; -11)
2. Постройте график функции y=4x-3. Пользуясь графиком найдите:
1) значение функции, если значение аргумента равно 1.
2) значение аргумента, при котором значение равно -7.
3. Не выполняя построения, найдите координаты точек пересечения графика функции y= -0,4x+2 с осями координат.

Показать ответ
Ответ:
Lenokguryhr
Lenokguryhr
08.03.2023 02:09
\lim_{n \to \infty} \frac{(n+1)^{4}-(n-1)^{4} }{(n+1)^{3}+(n+1)^{3}}
Неопределённость оо/оо. Чтобы раскрыть такую неопределённость обычно числитель и знаменатель делят на эн в максимальной степени. Для этого достаточно раскрыть скобки, привести подобные, найти эн в максимальной степени и разделить числитель и знаменатель на него.
Что мы и проделаем, но попутно будем делать упрощения, если получится. Для удобства сначала числитель преобразуем, потом знаменатель.

Числитель раскладываем по формуле разности квадратов. Причём два раза.
(n+1)^{4}-(n-1)^{4}=((n+1)^{2}-(n-1)^{2})*((n+1)^{2}+(n-1)^{2})=
=((n+1)-(n-1)) * ((n+1)+(n-1)) * ((n+1)^{2}+(n-1)^{2})=
=( n+1-n+1) * (n+1+n-1) * (n^{2}+2n+1+n^{2}-2n+1)=
=2 * 2n * (2n^{2}+2)=4n*2(n^{2}+1)=8n(n^{2}+1)

Знаменатель раскладываем по формуле суммы кубов
(n+1)^{3}+(n+1)^{3}=
=((n+1)+(n-1))*((n+1)^{2}-(n+1)(n-1)+(n-1)^{2})=
=2n*(n^{2}+2n+1-n^{2}+1+n^{2}-2n+1)=2n*(n^{2}+3)

Находим отношение числителя к знаменателю
\frac{8n(n^{2}+1)}{2n*(n^{2}+3)} = \frac{4(n^{2}+1)}{n^{2}+3}

Вот теперь переходим непосредственно к нахождению предела. Находим, что максимальная степень эн - это квадрат. Вот на эн в квадрате (n^{2}) и будем делить числитель и знаменатель
\lim_{n \to \infty} \frac{4(n^{2}+1)}{n^{2}+3}= \lim_{n \to \infty} \frac{4*(1+ \frac{1}{ n^{2}})}{1+ \frac{3}{n^{2}}}= \frac{4*(1+ \frac{1}{oo^{2}})}{1+ \frac{3}{oo^{2}}}= \frac{4(1+0)}{1+0} =4

При подстановке бесконечности получаем деление константы на бесконечность, что равно нулю.
0,0(0 оценок)
Ответ:
AjdanaLife
AjdanaLife
05.05.2021 10:50
Делим 100 на 2 - получаем 50. То есть 50 чисел которые не делятся на два.
Найдем сколько чисел из 50 делятся на 3, то есть разделим 50 на 3. Получается 16,6, то есть примерно 17. Значит 17 чисел из 50 делятся на три, остальные - нет. 50 минус 17 будет 33.

Также можно просто проверить перебором. Сразу запишем все нечетные числа от 1 до 100 так как они не делятся на 2.
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99
Из них уберем те, что делятся на 3.
1 5 7 11 13 17 19 23 25 29 31 35 37 41 43 47 49 53 55 59 61 65 67 71 73 77 79 83 85 89 91 95 97
И теперь просто посчитаем что осталось. Получим 33.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота