1. функцияның графигі нүктесінен өтсе коэффициенттің k мәнің табыңдар А) 3; В) 1; С) –1; D) –3; [1] 2. функцияның абсцисса осімен қиылысу нүктенің координатасын табыңдар: [2] 3. (0;4) нүктесінен өтетін және y=-3x функциясының графигіне параллель болатын функцияны формуламен жаз. [3] 4. Социологтар 20 оқушымен сауалнама өткізіп, өткен айда әрқайсысы қанша кітап оқығанын анықтады. Келесі ақпарат шықты: 3, 0, 1, 5, 1, 2, 3, 3, 1, 1, 3, 0, 3, 4, 2, 4, 5, 5, 6, 2 а) абсолют жиілік кестесін құрындар; b) салыстырмалы жиіліктерін есептеп, кестеде көрсетіңдер; с) ең көп кездескен кітап санын анықтаңдар; b) абсолют жиілік алқабын салыңдар. [5] 5. Теңдеулер жүйесін графиктік тәсілмен шешіңіз: [3] 6. y = (a +1)x + a −1 функцияның графигі абцисса осін (-2;0) нүктесінде қияды. a) а мәнін табыңыдар ; b) функцияны y = kx + b түрінде жазыңдар. [3] 7. Математикадан жазбаша емтиханның нәтижелері (максималды -10) абсолют жиілік полигоны түрінде берілген. Ақпаратты талдап, анықтаңыз: a) таңдама көлемін; b) көпшілік оқушылардың алған балы
Задача: Из A в B одновременно выехали два автомобилиста. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью, меньшей скорости первого авт-ста на 17 км/ч, а вторую половину пути проехал со скоростью 102 км/ч, в результате чего прибыл в В одновременно с первым авт-стом. Найдите скорость первого автомобилиста, если известно, что она больше 65 км/ч.
Обозначим скорость первого автомобилиста за x (км/ч), тогда сорсть второго на первом полупути — ха x−17 (км/ч), на втором полупути — 102 км/ч. Оба проехали общий путь за одно и то же время. Составим и решим уравнение, при условии, что x > 65 (км/ч).
x₂ = 51 < 65 — не удовлетворяет условие
х₁ = 68 > 65 — удовлетворяет условие
ответ: Скорость первого автомобилиста — 68 км/ч.
2 (км/час) - скорость течения реки
Объяснение:
х - скорость течения реки
9+х - скорость лодки по течению
9-х - скорость лодки против течения
77/(9+х) - время лодки по течению
77/(9-х) - время лодки против течения
По условию задачи на путь по течению затрачено на 4 часа меньше, уравнение:
77/(9-х) - 77/(9+х) = 4
Избавляемся от дробного выражения, общий знаменатель (9-х)(9+х) или 81-х², надписываем дополнительные множители над числителями:
77(9+х) - 77(9-х)=4(81-х²)
693+77х-693+77х=324-4х²
4х²+154х-324=0/4 разделим уравнение на 4 для удобства вычислений:
х²+38,5х-81=0
х₁,₂=(-38,5±√1482,25+324)/2
х₁,₂=(-38,5±√1806,25)/2
х₁,₂=(-38,5±42,5)/2
х₁= -81/2= -40,5 отбрасываем, как отрицательный
х₂= 4/2=2 (км/час) - скорость течения реки
Проверка:
77: 11=7 (часов) время по течению
77 : 7=11 (часов) время против течения
11-7=4 (часа) - разница, всё верно.