1).Группе из 7 человек надо пройти диспансеризацию. Чтобы упорядочить процесс осмотра, необходимо составить порядковый список учеников. Сколькими можно составить очередь на прием к врачу?
А)49; Б) 14; В)5040; Г)120.
2).Из цифр «1», «2» и «3» составили такие комбинации: 123; 133; 231; 213; 312; 321. Как называются такие комбинации?
А)Сочетанием; Б)размещением; В)перестановкой; Г)нет верного ответа.
3).Сколькими могут разместиться 4 человека в салоне автобуса на четырех свободных местах?
А)4; Б) 16; В)24; Г)12
4).Вычислить 16! : 14!
А)156; Б)8/7 ; В)16; Г)240
5).Имеются помидоры, огурцы, лук. Сколько различных салатов можно приготовить, если в каждый салат должно входить 2 различных вида овощей?
А)3; Б) 6; В)2; Г)1.
а) Предположим, что графики функций и . Чтобы найти координату точек пересечения приравняем две функции (они пересекаются, значит приравниваем). Получаем:
можем найти подставив в выражение первой функции , а можно сделать проще. Так как пересечение будет с прямой , то и точки пересечения будут иметь координату . Итак, получилось две точки пересечения с координатами: .
Покажем теперь то же на графике. Смотрите рисунок, приложенный к ответу.
№2.
а) Дан отрезок (этот отрезок по оси ), найдем значения на концах этого отрезка:
Имеем, что первое — наименьшее значение функции на заданном отрезке, а второе — наибольшее.
б) Делаем ту же работу:
Видим, что первое — наибольшее значение функции на заданном промежутке, а второе — наименьшее.
a=4(b+c)(по условию), b=c(соответственные углы), a+c=180°(смежные углы). Составляем систему: a+b=180° и a=8b => a+b=180° и a=8b => 8b+b=180° и a=8b => 9b=180° и a=8b => b=20° и a=160°
ответ: a=160°, b=20°, c=20°.
Если угол C и угол BDC равны 60°, то и угол DBC равен 60°, следовательно, треугольник BDC - равносторонний, а BC и BD равны 5 см. Если угол BDC равен 60°, а угол ABD равен 30°, то угол ADB равен 120° (как смежный с BDC), а угол BAD равен 30°, следовательно, треугольник ABD - равнобедренный, а AD равно 5 см. AC=5 см + 5 см = 10 см
ответ: AC=10 см, AD=5 см.