Иррациона́льное число́ — это вещественное число, которое не является рациональным, то есть не может быть представлено в виде обыкновенной дроби {\displaystyle \pm {\frac {m}{n}}}{\displaystyle \pm {\frac {m}{n}}}, где {\displaystyle m,n}m,n — натуральные числа. Иррациональное число может быть представлено в виде бесконечной непериодической десятичной дроби.
Другими словами, множество иррациональных чисел есть разность {\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} }{\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} } множеств вещественных и рациональных чисел.
О существовании иррациональных чисел (точнее отрезков, несоизмеримых с отрезком единичной длины), знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа {\displaystyle {\sqrt {2}}}{\sqrt {2}}[1].
К числу иррациональных чисел относятся отношение π окружности круга к его диаметру, число Эйлера e, золотое сечение φ и квадратный корень из двух[2][3][4]; на самом деле все квадратные корни натуральных чисел, кроме полных квадратов, иррациональны.
Иррациональные числа также могут рассматриваться через бесконечные непрерывные дроби. Следствием доказательства Кантора является то, что действительные числа неисчислимы, а рациональные счетны, отсюда следует, что почти все действительные числа иррациональны[5].
Во-первых на конце четырёхзначного числа ноля быть не может, т.к. при его вычеркивании трехзначное число будет в 10 раз меньше, что не подходит по условию задачи.
Во-вторых на первом месте ноля тоже быть не может, т.к. это будет уже не четырехзначное число.
Вывод: в четырехзначном числе ноль находится на втором, либо на третьем месте
Пусть ноль стоит на втором месте, тогда представим четырёхзначное число в виде: [x 0 y z] при вычеркивании ноля, получим [x y z]
Запишем уравнение
1000x + 10y + z = 9 ( 100x + 10y + z)
1000x + 10y + z = 900x + 90y + 9z
8z = 100x - 80y
z = 12,5x - 10y
Из данного уравнения видно, что произведение 12,5Х должно быть числом целым, это возможно при Х = 2, 4, 6, 8. Незабываем, что цифры из которых состоит число, лежат в пределах от 0 до 9 !
1) Пусть х =2 , тогда
z = 12,5 * - 10y = 25 - 10y
при подборе числа Y учитываем, что разница должна быть положительной величиной и быть не более 9, это число y =2
Тогда z = 25 - 10 * 2 = 5
Окончательно запишем число: 2025
2) Пусть х =4 , тогда
z = 12,5 *4 - 10y = 50 - 10y
при подборе числа Y учитываем, что разница должна быть положительной величиной и быть не более 9, это число y =5
Тогда z = 50 - 10 * 5 = 0
Окончательно запишем число: 4050 - не подходит, т.к. здесь два ноля, что не соответствует условию задачи
3) Пусть х =6 , тогда
z = 12,5 *6 - 10y = 75 - 10y
при подборе числа Y учитываем, что разница должна быть положительной величиной и быть не более 9, это число y =7
Тогда z = 75 - 10 * 7 = 5
Окончательно запишем число: 6075
4) Пусть х =8 , тогда
z = 12,5*8 - 10y = 100 - 10y
при подборе числа Y учитываем, что разница должна быть положительной величиной и быть не более 9, нет такого числа
Пусть ноль стоит на третьем месте, тогда представим четырёхзначное число в виде: [x y 0 z] при вычеркивании ноля, получим [x y z]
Запишем уравнение
1000x + 100y + z = 9 ( 100x + 10y + z)
1000x + 100y + z = 900x + 90y + 9z
8z = 100x + 10y
z = 12,5x + 1,25y - не имеет решения видно, т.к. при любых значениях Х и У (кроме нуля) , число Z > 9.
Иррациона́льное число́ — это вещественное число, которое не является рациональным, то есть не может быть представлено в виде обыкновенной дроби {\displaystyle \pm {\frac {m}{n}}}{\displaystyle \pm {\frac {m}{n}}}, где {\displaystyle m,n}m,n — натуральные числа. Иррациональное число может быть представлено в виде бесконечной непериодической десятичной дроби.
Иррациональные числа
ζ(3) — ρ — √2 — √3 — √5 — ln 2 — φ,Φ — ψ — α,δ — e — {\displaystyle e^{\pi }}e^{\pi } и π
Другими словами, множество иррациональных чисел есть разность {\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} }{\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} } множеств вещественных и рациональных чисел.
О существовании иррациональных чисел (точнее отрезков, несоизмеримых с отрезком единичной длины), знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа {\displaystyle {\sqrt {2}}}{\sqrt {2}}[1].
К числу иррациональных чисел относятся отношение π окружности круга к его диаметру, число Эйлера e, золотое сечение φ и квадратный корень из двух[2][3][4]; на самом деле все квадратные корни натуральных чисел, кроме полных квадратов, иррациональны.
Иррациональные числа также могут рассматриваться через бесконечные непрерывные дроби. Следствием доказательства Кантора является то, что действительные числа неисчислимы, а рациональные счетны, отсюда следует, что почти все действительные числа иррациональны[5].
Во-первых на конце четырёхзначного числа ноля быть не может, т.к. при его вычеркивании трехзначное число будет в 10 раз меньше, что не подходит по условию задачи.
Во-вторых на первом месте ноля тоже быть не может, т.к. это будет уже не четырехзначное число.
Вывод: в четырехзначном числе ноль находится на втором, либо на третьем месте
Пусть ноль стоит на втором месте, тогда представим четырёхзначное число в виде: [x 0 y z] при вычеркивании ноля, получим [x y z]
Запишем уравнение
1000x + 10y + z = 9 ( 100x + 10y + z)
1000x + 10y + z = 900x + 90y + 9z
8z = 100x - 80y
z = 12,5x - 10y
Из данного уравнения видно, что произведение 12,5Х должно быть числом целым, это возможно при Х = 2, 4, 6, 8. Незабываем, что цифры из которых состоит число, лежат в пределах от 0 до 9 !
1) Пусть х =2 , тогда
z = 12,5 * - 10y = 25 - 10y
при подборе числа Y учитываем, что разница должна быть положительной величиной и быть не более 9, это число y =2
Тогда z = 25 - 10 * 2 = 5
Окончательно запишем число: 2025
2) Пусть х =4 , тогда
z = 12,5 *4 - 10y = 50 - 10y
при подборе числа Y учитываем, что разница должна быть положительной величиной и быть не более 9, это число y =5
Тогда z = 50 - 10 * 5 = 0
Окончательно запишем число: 4050 - не подходит, т.к. здесь два ноля, что не соответствует условию задачи
3) Пусть х =6 , тогда
z = 12,5 *6 - 10y = 75 - 10y
при подборе числа Y учитываем, что разница должна быть положительной величиной и быть не более 9, это число y =7
Тогда z = 75 - 10 * 7 = 5
Окончательно запишем число: 6075
4) Пусть х =8 , тогда
z = 12,5*8 - 10y = 100 - 10y
при подборе числа Y учитываем, что разница должна быть положительной величиной и быть не более 9, нет такого числа
Пусть ноль стоит на третьем месте, тогда представим четырёхзначное число в виде: [x y 0 z] при вычеркивании ноля, получим [x y z]
Запишем уравнение
1000x + 100y + z = 9 ( 100x + 10y + z)
1000x + 100y + z = 900x + 90y + 9z
8z = 100x + 10y
z = 12,5x + 1,25y - не имеет решения видно, т.к. при любых значениях Х и У (кроме нуля) , число Z > 9.
ответ: 2-а числа