Попробую объяснить порядок решения задачи. Пусть одна труба запонит бассейн за Х часов, тогда вторая труба заполнит его за Х+6 часов. Известно что вместе две трубы заполнили его за 2 часа половину бассейна, значит за 2*2=4 часа они заполнят весь бассейн. Можно записать: 1/Х+1/(Х+6)=1/4. Левую часть приведём к общему знаменателю, получим (2Х+6)/(Х²+6)=1/4 или 8Х+24=Х²+6Х. Решаем квадратное уравнение: Х²-2Х-24=0; дискриминант D=4-4*(-24)=100, находим корни Х₁=(2-10)/2=-4 (нам не подходит, так как время не может быть отрицательным), Х₂=(2+10)/2=6 часов потребуется первой трубе наполнить бассейн. А второй трубе потребуется 6+6=12 часов чтобы наполнить бассейн.
( x - 1)^2 - 4 = 4 - ( 1 - x)^2 или ( x - 1)^2 - 4 = - (4 -(1 - x)^2)
x^2 - 2x + 1 - 4 = 4 -(1 - 2x+x^2) x^2-2x+1-4= -(4 -(1-2x+x^2)
x^2 - 2x - 3 - 3 - 2x + x^2=0 x^2-2x-3=- (3+2x-x^2)
2x^2 - 4x - 6 = 0 x^2 - 2x-3= - 3 - 2x + x^2
x^2 - 2x - 3= 0 x^2 - x^2 - 2x+ 2x = - 3+3
D = b^2 - 4ac = 4+12=16 0x = 0 - имеет бесконечное множество
x1 = (2 + 4)/2 = 3 решений
x2 = ( 2 - 4)/ 2 = - 1