1) Из каждой вершины выпуклого многогранника исходит три рёбра. Сколько вершин и граней имеет этот многогранник, если число его рёбер равно a)12; b)15 2)Из каждой вершины выпуклого многогранника исходит четыре рёбра. Сколько вершин и граней имеет этот многогранник, если число его рёбер равно 12
x^2+3x-5=0 - это биквадратное уравнение, соответствующее формуле ax^2+bx+c=0, где a,b,c - числа
Уравнение дискриминанта: D=a^2-4ac (если оно меньше 0, то у уравнения нет корней, если больше нуля, то 2 корня, если меньше - 1)
x=(-b+-) / 2a из-за +- и есть x1 и x2
Решаем:
a=1; b=3; c=-5;
D= 1-4*1*(-5)= 21 >0 значит у уравнения 2 корня
x1=-3(1+)/2
x2=-3(1-)/2
переворачиваем дробь(т.к. у нас деление на 1): 2/-3(1+) и с x2 делаем тоже самое
поучаем выражение 2/-3(1+)+2/-3(1-) домножаем на выражения в скобках и складываем дроби: (2(1-)+2(1+))/-3(1-)(1+) = 4/-3(1^2-^2)=4/6=2/3