№1)известно , что 3 < b < 7 . оцените значения выражений . а) b + 1 б) 9b в) 23 - b г) 1/b №2. оцените боковую строну a равнобедренного треугольника с периметром p см и основанием 7,4 см , если 24,4 < p < 24,6 !
Я уже решал эту задачу. Они выехали в момент 14-t, то есть за t ч до 14, и встретились в 14. Скорость велосипеда была v, скорость мотоцикла w км/ч. При движении навстречу скорости складываются. Расстояние AB=S. Значит, время в пути S = t*(v+w) Если бы скорость вела была 2v, то они встретились бы в 13 ч 30 мин, то есть на 0,5 ч раньше. S = (t-0,5)(2v+w) Если бы скорость мото была 2w, то они встретились бы в 13 ч 12 мин, то есть на 48 мин=0,8 ч раньше S = (t-0,8)(2w+v) Получаем систему { S = tv + tw { S = 2tv + tw - v - 0,5w { S = 2tw + tv - 1,6w - 0,8v Из 2 ур-ния вычитаем 1 ур-ние. Из 3 ур-ния тоже вычитаем 1 ур-ние. { 0 = tv - v - 0,5w { 0 = tw - 1,6w - 0,8v Решаем { w = 2v*(t-1) { 0,8v = w(t-1,6) = 2v(t-1)(t-1,6) Делим всё на 2v и умножаем на 5 2 = 5(t^2-2,6t+1,6) 5t^2 - 13t + 6 = 0 D = 13^2 - 4*5*6 = 169 - 120 = 49 t1 = (13-7)/10 = 6/10 = 0,6 ч = 36 мин. t2 = (13+7)/10 = 20/10 = 2 ч. Если t1, то они выехали в 14 ч - 36 мин = 13 ч 24 мин. Но это позже, чем 13 ч 12 мин, поэтому не подходит. ответ: они выехали в 14 - 2 = 12 часов.
Они выехали в момент 14-t, то есть за t ч до 14, и встретились в 14.
Скорость велосипеда была v, скорость мотоцикла w км/ч.
При движении навстречу скорости складываются.
Расстояние AB=S. Значит, время в пути
S = t*(v+w)
Если бы скорость вела была 2v, то они встретились бы в
13 ч 30 мин, то есть на 0,5 ч раньше.
S = (t-0,5)(2v+w)
Если бы скорость мото была 2w, то они встретились бы в
13 ч 12 мин, то есть на 48 мин=0,8 ч раньше
S = (t-0,8)(2w+v)
Получаем систему
{ S = tv + tw
{ S = 2tv + tw - v - 0,5w
{ S = 2tw + tv - 1,6w - 0,8v
Из 2 ур-ния вычитаем 1 ур-ние. Из 3 ур-ния тоже вычитаем 1 ур-ние.
{ 0 = tv - v - 0,5w
{ 0 = tw - 1,6w - 0,8v
Решаем
{ w = 2v*(t-1)
{ 0,8v = w(t-1,6) = 2v(t-1)(t-1,6)
Делим всё на 2v и умножаем на 5
2 = 5(t^2-2,6t+1,6)
5t^2 - 13t + 6 = 0
D = 13^2 - 4*5*6 = 169 - 120 = 49
t1 = (13-7)/10 = 6/10 = 0,6 ч = 36 мин.
t2 = (13+7)/10 = 20/10 = 2 ч.
Если t1, то они выехали в 14 ч - 36 мин = 13 ч 24 мин.
Но это позже, чем 13 ч 12 мин, поэтому не подходит.
ответ: они выехали в 14 - 2 = 12 часов.
1.
(sin3A+sinA) / (cos3A+cosA) =
= (2·sin((3A+A)/2)·cos((3A-A)/2)) / (2·cos((3A+A)/2)·cos((3A-A)/2)) =
= (2·sin2A·cosA) / (2·cos2A·cosA) =
= (2·sin2A) / (2·cos2A) =
= (2·sin2A·cos2A) / (2·cos2A·cos2A) =
= (sin4A) / (2·cos²2A) =
= (sin4A) / (2·cos²2A) = (sin4A) / (1+cos4A)
2.
4·cos(A/3)·cos(A/4)·cos(A/6) =
= 4·cos(A/4)·(cos(A/3)·cos(A/6)) =
= 4·cos(A/4)·(1/2)·(cos(A/3+A/6)+cos(A/3-A/6)) =
= 2·cos(A/4)·(cos(A/2)+cos(A/6)) =
= 2·cos(A/4)·cos(A/2)+2·cos(A/4)·cos(A/6) =
= 2·(1/2)·(cos(A/4+A/2)+cos(A/4-A/2)) +
+ 2·(1/2)·(cos(A/4+A/6)+cos(A/4-A/6)) =
= cos(3A/4)+cos(-A/4)+cos(5A/12)+cos(A/12) =
= cos(3A/4)+cos(A/4)+cos(5A/12)+cos(A/12)