Решение: Обозначим количество конфет по цене 110руб за (х) кг, а количество конфет по цене 150руб за (1кг-х) кг Тогда конфеты по цене 110руб стоят на 110*х=110 руб, а конфеты по цене 150 руб стоят на 150*(1-х)=(150-150х) руб А так как общее количество конфет составило 1 кг, составим уравнение: [110х +(150-150х) ] /1=120 110х+150-150х=120 110х-150х=120-150 -40х=-30 х=-30 : -40 х=3/4=0,75кг (куплено по цене 110руб за 1кг) или 0,75кг 1-3/4=4/4-3/4=1/4=0,25 кг (куплено по цене 150 руб за 1кг) или 0,25кг
ответ: В 1кг смеси конфет содержится 0,75кг по цене 110руб и 0,25кг по цене 150руб
Обозначим количество конфет по цене 110руб за (х) кг, а количество конфет по цене 150руб за (1кг-х) кг
Тогда конфеты по цене 110руб стоят на 110*х=110 руб,
а конфеты по цене 150 руб стоят на 150*(1-х)=(150-150х) руб
А так как общее количество конфет составило 1 кг, составим уравнение:
[110х +(150-150х) ] /1=120
110х+150-150х=120
110х-150х=120-150
-40х=-30
х=-30 : -40
х=3/4=0,75кг (куплено по цене 110руб за 1кг) или 0,75кг
1-3/4=4/4-3/4=1/4=0,25 кг (куплено по цене 150 руб за 1кг) или 0,25кг
ответ: В 1кг смеси конфет содержится 0,75кг по цене 110руб и 0,25кг по цене 150руб
Объяснение:
{ x² - y² = 4 , ⇒ { x² - y² = 4 , ⇒ { x² - y² = 4 , ⇒
{ x⁴ - y⁴ = 64 ; { (x² - y²)(x² + y²) = 64 ; { 4(x²+ y²) = 64 ;
{ x² - y² = 4 ,
{ x²+ y² = 16 ; додаємо рівняння системи :
2x² = 20 ; > x² = 10 ; > x₁,₂ = ± √10 . При таких
значеннях х із ІІ - го рівняння останньої системи маємо :
10 + у² = 16 ; > у² = 16 - 10 ; > у² = 6 ; > y₁,₂ = ± √6 .
Отже , x²+ y² = 16 ; а розв"язки системи такі :
(- √10 ;- √6 ) , (- √10 ; √6 ) , ( √10 ;- √6 ) , ( √10 ; √6 ) .
Система рівнянь має 4 розв"язки .