1. Какие значения может принимать: 1) sin α, если cos α = ; 2) cos α, если sin α = -; 2. Вычислить значение каждой из тригонометрических функций, если: а) sin α = и < α < π; б) tg α = и < α <; в) ctg α = и < α <. 3. Могут ли одновременно выполняться равенства: ctg α = и cos α = ? 4. Доказать тождество: ; 5. Упростить выражение: 1) ; 2) sin α· ctg α – 3 cos α. 6. Найти значения выражений: а) (α – ) + 3 tg (), если α= б) cos( α + ) (2α + ), если
Характеристическое свойство арифметической прогрессии: каждый член арифметической прогрессии, начиная со второго, равен полусумме предыдущего и последующего члена.
Значит, нужно доказать, что:
Выполняем преобразования:
Выражаем b и с через а и d:
Слева и справа записаны одинаковые выражения. Значит, заданные числа удовлетворяют характеристическому свойству и являются последовательными членами арифметической прогрессии
Based on two different cases:
x
=
π
6
,
5
π
6
or
3
π
2
Look below for the explanation of these two cases.
Explanation:
Since,
cos
x
+
sin
2
x
=
1
we have:
cos
2
x
=
1
−
sin
2
x
So we can replace
cos
2
x
in the equation
1
+
sin
x
=
2
cos
2
x
by
(
1
−
sin
2
x
)
⇒
2
(
1
−
sin
2
x
)
=
sin
x
+
1
or,
2
−
2
sin
2
x
=
sin
x
+
1
or,
0
=
2
sin
2
x
+
sin
x
+
1
−
2
or,
2
sin
2
x
+
sin
x
−
1
=
0
using the quadratic formula:
x
=
−
b
±
√
b
2
−
4
a
c
2
a
for quadratic equation
a
x
2
+
b
x
+
c
=
0
we have:
sin
x
=
−
1
±
√
1
2
−
4
⋅
2
⋅
(
−
1
)
2
⋅
2
or,
sin
x
=
−
1
±
√
1
+
8
4
or,
sin
x
=
−
1
±
√
9
4
or,
sin
x
=
−
1
±
3
4
or,
sin
x
=
−
1
+
3
4
,
−
1
−
3
4
or,
sin
x
=
1
2
,
−
1
Case I:
sin
x
=
1
2
for the condition:
0
≤
x
≤
2
π
we have:
x
=
π
6
or
5
π
6
to get positive value of
sin
x
Case II:
sin
x
=
−
1
we have:
x
=
3
π
2
to get negative value of
sin
x
Answer link
Объяснение: